These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38787536)
1. Diagrammatic representation and nonperturbative approximations of the exact time-convolutionless master equation. Gu B J Chem Phys; 2024 May; 160(20):. PubMed ID: 38787536 [TBL] [Abstract][Full Text] [Related]
2. Nonperturbative time-convolutionless quantum master equation from the path integral approach. Nan G; Shi Q; Shuai Z J Chem Phys; 2009 Apr; 130(13):134106. PubMed ID: 19355716 [TBL] [Abstract][Full Text] [Related]
3. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model. Kidon L; Wilner EY; Rabani E J Chem Phys; 2015 Dec; 143(23):234110. PubMed ID: 26696049 [TBL] [Abstract][Full Text] [Related]
4. Perturbation expansions of stochastic wavefunctions for open quantum systems. Ke Y; Zhao Y J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416 [TBL] [Abstract][Full Text] [Related]
5. Non-Markovian relaxation of a three-level system: quantum trajectory approach. Jing J; Yu T Phys Rev Lett; 2010 Dec; 105(24):240403. PubMed ID: 21231512 [TBL] [Abstract][Full Text] [Related]
6. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. Jin J; Zheng X; Yan Y J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515 [TBL] [Abstract][Full Text] [Related]
7. Semiclassical approaches to perturbative time-convolution and time-convolutionless quantum master equations for electronic transitions in multistate systems. Sun X; Liu Z J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748010 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of perturbative master equations. Fleming CH; Cummings NI Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031117. PubMed ID: 21517464 [TBL] [Abstract][Full Text] [Related]
9. On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation. Lai Y; Geva E J Chem Phys; 2021 Nov; 155(20):204101. PubMed ID: 34852488 [TBL] [Abstract][Full Text] [Related]
10. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). Tanimura Y J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942 [TBL] [Abstract][Full Text] [Related]
11. Dynamical and thermodynamical approaches to open quantum systems. Semin V; Petruccione F Sci Rep; 2020 Feb; 10(1):2607. PubMed ID: 32054893 [TBL] [Abstract][Full Text] [Related]
12. Application of a time-convolutionless stochastic Schrödinger equation to energy transport and thermal relaxation. Biele R; Timm C; D'Agosta R J Phys Condens Matter; 2014 Oct; 26(39):395303. PubMed ID: 25204376 [TBL] [Abstract][Full Text] [Related]
14. Nonperturbative master equation solution of central spin dephasing dynamics. Barnes E; Cywiński Ł; Das Sarma S Phys Rev Lett; 2012 Oct; 109(14):140403. PubMed ID: 23083231 [TBL] [Abstract][Full Text] [Related]
15. Using non-Markovian measures to evaluate quantum master equations for photosynthesis. Chen HB; Lambert N; Cheng YC; Chen YN; Nori F Sci Rep; 2015 Aug; 5():12753. PubMed ID: 26238479 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of open quantum spin systems: An assessment of the quantum master equation approach. Zhao P; De Raedt H; Miyashita S; Jin F; Michielsen K Phys Rev E; 2016 Aug; 94(2-1):022126. PubMed ID: 27627265 [TBL] [Abstract][Full Text] [Related]
18. Post-Markovian quantum master equations from classical environment fluctuations. Budini AA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012147. PubMed ID: 24580212 [TBL] [Abstract][Full Text] [Related]
19. Perturbative approach to Markovian open quantum systems. Li AC; Petruccione F; Koch J Sci Rep; 2014 May; 4():4887. PubMed ID: 24811607 [TBL] [Abstract][Full Text] [Related]
20. Quantum master equation for a system influencing its environment. Esposito M; Gaspard P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066112. PubMed ID: 14754274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]