These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38787640)

  • 21. Metabolic Engineering of
    Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W
    ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Biosynthesis of (2
    Gao S; Lyu Y; Zeng W; Du G; Zhou J; Chen J
    J Agric Food Chem; 2020 Jan; 68(4):1015-1021. PubMed ID: 31690080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
    Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y
    J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases.
    Ramirez-Ahumada Mdel C; Timmermann BN; Gang DR
    Phytochemistry; 2006 Sep; 67(18):2017-29. PubMed ID: 16890967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.
    Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy.
    Wang C; Su X; Sun M; Zhang M; Wu J; Xing J; Wang Y; Xue J; Liu X; Sun W; Chen S
    Microb Cell Fact; 2019 May; 18(1):95. PubMed ID: 31138208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Liu Y; Liu H; Hu H; Ng KR; Yang R; Lyu X
    J Agric Food Chem; 2022 Jun; 70(24):7490-7499. PubMed ID: 35649155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae.
    Zhang Q; Wang X; Zeng W; Xu S; Li D; Yu S; Zhou J
    Metab Eng; 2023 Mar; 76():50-62. PubMed ID: 36634840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae.
    Krink-Koutsoubelis N; Loechner AC; Lechner A; Link H; Denby CM; Vögeli B; Erb TJ; Yuzawa S; Jakociunas T; Katz L; Jensen MK; Sourjik V; Keasling JD
    ACS Synth Biol; 2018 Apr; 7(4):1105-1115. PubMed ID: 29498824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo bio-production of odd-chain fatty acids in Saccharomyces cerevisiae through a synthetic pathway via 3-hydroxypropionic acid.
    Qi N; Ding W; Dong G; Wang Z; Shi S
    Biotechnol Bioeng; 2023 Mar; 120(3):852-858. PubMed ID: 36464776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose.
    Yin H; Hu T; Zhuang Y; Liu T
    Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer.
    Chen N; Wang J; Zhao Y; Deng Y
    Microb Cell Fact; 2018 May; 17(1):67. PubMed ID: 29729665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J; Zhao H
    ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant
    Sun H; Yang J; Lin X; Li C; He Y; Cai Z; Zhang G; Song H
    J Agric Food Chem; 2020 Jul; 68(29):7710-7717. PubMed ID: 32580548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of the plant polyketide curcumin in
    Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y
    Biosci Biotechnol Biochem; 2019 Jul; 83(7):1372-1381. PubMed ID: 31023165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.