BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38787671)

  • 1. ParaCPI: A Parallel Graph Convolutional Network for Compound-Protein Interaction Prediction.
    Zhang L; Zeng W; Chen J; Chen J; Li K
    IEEE/ACM Trans Comput Biol Bioinform; 2024 May; PP():. PubMed ID: 38787671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GraphCPIs: A novel graph-based computational model for potential compound-protein interactions.
    Chen ZH; Zhao BW; Li JQ; Guo ZH; You ZH
    Mol Ther Nucleic Acids; 2023 Jun; 32():721-728. PubMed ID: 37251691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inductive graph neural network model for compound-protein interaction prediction based on a homogeneous graph.
    Wan X; Wu X; Wang D; Tan X; Liu X; Fu Z; Jiang H; Zheng M; Li X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35275993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model.
    Zhang Y; Li J; Lin S; Zhao J; Xiong Y; Wei DQ
    J Cheminform; 2024 Jun; 16(1):67. PubMed ID: 38849874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning method for predicting molecular properties and compound-protein interactions.
    Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J
    J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation.
    Lin X; Quan Z; Wang ZJ; Guo Y; Zeng X; Yu PS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):932-943. PubMed ID: 35951570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MDL-CPI: Multi-view deep learning model for compound-protein interaction prediction.
    Wei L; Long W; Wei L
    Methods; 2022 Aug; 204():418-427. PubMed ID: 35114401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bidirectional interpretable compound-protein interaction prediction framework based on cross attention.
    Wang M; Wang J; Rong Z; Wang L; Xu Z; Zhang L; He J; Li S; Cao L; Hou Y; Li K
    Comput Biol Med; 2024 Apr; 172():108239. PubMed ID: 38460309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GraphsformerCPI: Graph Transformer for Compound-Protein Interaction Prediction.
    Ma J; Zhao Z; Li T; Liu Y; Ma J; Zhang R
    Interdiscip Sci; 2024 Mar; ():. PubMed ID: 38457109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Graph Convolutional Network-Based Method for Chemical-Protein Interaction Extraction: Algorithm Development.
    Wang E; Wang F; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    JMIR Med Inform; 2020 May; 8(5):e17643. PubMed ID: 32348257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of recent advances and challenges in predicting compound-protein interaction (CPI).
    Li Y; Fan Z; Rao J; Chen Z; Chu Q; Zheng M; Li X
    Med Rev (2021); 2023 Dec; 3(6):465-486. PubMed ID: 38282802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOTF-CPI: A compound-protein interaction prediction transformer based on the fusion of optimal transport fragments.
    Yin Z; Chen Y; Hao Y; Pandiyan S; Shao J; Wang L
    iScience; 2024 Jan; 27(1):108756. PubMed ID: 38230261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving compound-protein interaction prediction by building up highly credible negative samples.
    Liu H; Sun J; Guan J; Zheng J; Zhou S
    Bioinformatics; 2015 Jun; 31(12):i221-9. PubMed ID: 26072486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FMGNN: A Method to Predict Compound-Protein Interaction With Pharmacophore Features and Physicochemical Properties of Amino Acids.
    Tang C; Zhong C; Wang M; Zhou F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1030-1040. PubMed ID: 35503835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound-protein interaction prediction by deep learning: Databases, descriptors and models.
    Du BX; Qin Y; Jiang YF; Xu Y; Yiu SM; Yu H; Shi JY
    Drug Discov Today; 2022 May; 27(5):1350-1366. PubMed ID: 35248748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.