These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 38787874)
1. Heteroscedasticity effects as component to future stock market predictions using RNN-based models. Sadon AN; Ismail S; Khamis A; Tariq MU PLoS One; 2024; 19(5):e0297641. PubMed ID: 38787874 [TBL] [Abstract][Full Text] [Related]
2. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model. Lv J; Wang C; Gao W; Zhao Q Comput Intell Neurosci; 2021; 2021():8128879. PubMed ID: 34621309 [TBL] [Abstract][Full Text] [Related]
3. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns. Bildirici M; Ersin Ö ScientificWorldJournal; 2014; 2014():497941. PubMed ID: 24977200 [TBL] [Abstract][Full Text] [Related]
4. Recurrent neural network architecture for forecasting banana prices in Gujarat, India. Kumari P; Goswami V; N H; Pundir RS PLoS One; 2023; 18(6):e0275702. PubMed ID: 37319281 [TBL] [Abstract][Full Text] [Related]
5. LSTM-GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. García-Medina A; Aguayo-Moreno E Comput Econ; 2023 Mar; ():1-32. PubMed ID: 37362593 [TBL] [Abstract][Full Text] [Related]
6. Modelling time-varying volatility using GARCH models: evidence from the Indian stock market. Ali F; Suri P; Kaur T; Bisht D F1000Res; 2022; 11():1098. PubMed ID: 36567684 [No Abstract] [Full Text] [Related]
7. Forecasting stock prices with long-short term memory neural network based on attention mechanism. Qiu J; Wang B; Zhou C PLoS One; 2020; 15(1):e0227222. PubMed ID: 31899770 [TBL] [Abstract][Full Text] [Related]
8. Predicting the volatility of Chinese stock indices based on realized recurrent conditional heteroskedasticity. Zhang G; Zhao H; Fan R PLoS One; 2024; 19(10):e0308967. PubMed ID: 39423217 [TBL] [Abstract][Full Text] [Related]
9. A new hybrid PM[Formula: see text] volatility forecasting model based on EMD and machine learning algorithms. Wang P; Bi X; Zhang G; Yu M Environ Sci Pollut Res Int; 2023 Jul; 30(34):82878-82894. PubMed ID: 37335511 [TBL] [Abstract][Full Text] [Related]
10. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
11. How to Promote the Performance of Parametric Volatility Forecasts in the Stock Market? A Neural Networks Approach. Su JB Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573776 [TBL] [Abstract][Full Text] [Related]
12. Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model. Si Y; Nadarajah S; Zhang Z; Xu C PLoS One; 2024; 19(3):e0299164. PubMed ID: 38478502 [TBL] [Abstract][Full Text] [Related]
13. Enhancing stock volatility prediction with the AO-GARCH-MIDAS model. Liu T; Choo W; Tunde MB; Wan C; Liang Y PLoS One; 2024; 19(6):e0305420. PubMed ID: 38861584 [TBL] [Abstract][Full Text] [Related]
14. Impact of chart image characteristics on stock price prediction with a convolutional neural network. Jin G; Kwon O PLoS One; 2021; 16(6):e0253121. PubMed ID: 34161352 [TBL] [Abstract][Full Text] [Related]
15. Sparrow Search Algorithm-Optimized Long Short-Term Memory Model for Stock Trend Prediction. Liu F; Qin P; You J; Fu Y Comput Intell Neurosci; 2022; 2022():3680419. PubMed ID: 35990139 [TBL] [Abstract][Full Text] [Related]
16. Hybridization of long short-term memory neural network in fractional time series modeling of inflation. Arif E; Herlinawati E; Devianto D; Yollanda M; Permana D Front Big Data; 2023; 6():1282541. PubMed ID: 38239206 [TBL] [Abstract][Full Text] [Related]
17. DPP: Deep predictor for price movement from candlestick charts. Hung CC; Chen YJ PLoS One; 2021; 16(6):e0252404. PubMed ID: 34153042 [TBL] [Abstract][Full Text] [Related]
18. Novel grey wolf optimizer based parameters selection for GARCH and ARIMA models for stock price prediction. Bagalkot SS; A DH; Naik N PeerJ Comput Sci; 2024; 10():e1735. PubMed ID: 38196957 [TBL] [Abstract][Full Text] [Related]
19. The Prediction of Enterprise Stock Change Trend by Deep Neural Network Model. Ma G; Chen P; Liu Z; Liu J Comput Intell Neurosci; 2022; 2022():9193055. PubMed ID: 35958787 [TBL] [Abstract][Full Text] [Related]
20. Traffic Volatility Forecasting Using an Omnibus Family GARCH Modeling Framework. Ou J; Huang X; Zhou Y; Zhou Z; Nie Q Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]