These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 3878794)
21. Effect of GABA and its antagonists, bicuculline and picrotoxin, on nerve cell discharges of the photosensory pineal organ of the frog, Rana esculenta. Meissl H; George SR Brain Res; 1985 Apr; 332(1):39-46. PubMed ID: 2986761 [TBL] [Abstract][Full Text] [Related]
22. Abolition of monocular optokinetic nystagmus directional asymmetry after unilateral visual deprivation in adult vertebrates: involvement of the GABAergic mechanism. Yucel YH; Kim MS; Jardon B; Bonaventure N Brain Res Dev Brain Res; 1990 May; 53(2):179-85. PubMed ID: 2357790 [TBL] [Abstract][Full Text] [Related]
23. GABAergic control of retinal ganglion cell dendritic development. Chabrol FP; Eglen SJ; Sernagor E Neuroscience; 2012 Dec; 227():30-43. PubMed ID: 23022539 [TBL] [Abstract][Full Text] [Related]
24. The role of GABA and excitatory amino acids in the development of the leptazol-induced epileptogenic EEG. Kent AP; Webster RA Neuropharmacology; 1986 Sep; 25(9):1023-30. PubMed ID: 2877416 [TBL] [Abstract][Full Text] [Related]
25. N-methyl-D-aspartate antagonists suppress the development of frog symmetric monocular optokynetic nystagmus observed after unilateral visual deprivation. Jardon B; Bonaventure N Brain Res Dev Brain Res; 1992 May; 67(1):67-73. PubMed ID: 1353422 [TBL] [Abstract][Full Text] [Related]
26. Analysis of vertebrate eye movements following intravitreal drug injections. I. Blockade of retinal ON-cells by 2-amino-4-phosphonobutyrate eliminates optokinetic nystagmus. Knapp AG; Ariel M; Robinson FR J Neurophysiol; 1988 Sep; 60(3):1010-21. PubMed ID: 3171653 [TBL] [Abstract][Full Text] [Related]
27. In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats. Saigusa T; Aono Y; Sekino R; Uchida T; Takada K; Oi Y; Koshikawa N; Cools AR Neuropharmacology; 2012 Feb; 62(2):907-13. PubMed ID: 21964521 [TBL] [Abstract][Full Text] [Related]
28. Analysis of vertebrate eye movements following intravitreal drug injections. IV. Drug-induced eye movements are unyoked in the turtle. Ariel M J Neurophysiol; 1991 Apr; 65(4):1003-9. PubMed ID: 2051203 [TBL] [Abstract][Full Text] [Related]
29. Is a retinal input involved in the generation of eye resetting fast phases in the frog eye optokinetic nystagmus? Yücel YH; Jardon B; Bonaventure N Neurosci Lett; 1989 Feb; 97(1-2):80-4. PubMed ID: 2919013 [TBL] [Abstract][Full Text] [Related]
30. Evidence for modulation of GABAergic neurotransmission by nicotine. Freund RK; Jungschaffer DA; Collins AC; Wehner JM Brain Res; 1988 Jun; 453(1-2):215-20. PubMed ID: 2841012 [TBL] [Abstract][Full Text] [Related]
31. Involvement of ON and OFF retinal channels in the eye and head horizontal optokinetic nystagmus of the frog. Yücel YH; Jardon B; Bonaventure N Vis Neurosci; 1989; 2(4):357-65. PubMed ID: 2487658 [TBL] [Abstract][Full Text] [Related]
32. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network. Schmitt DE; Hill RH; Grillner S J Neurophysiol; 2004 Oct; 92(4):2357-67. PubMed ID: 15190090 [TBL] [Abstract][Full Text] [Related]
33. [Effects of systemic administration of strychnine, L-allylglycine, bicuculline and picrotoxin on the transsynaptic neural destruction in the medullary dorsal horn following transection of the rat inferior alveolar nerve]. Takemura M; Sugimoto T; Sakai A Nihon Seirigaku Zasshi; 1987; 49(10):633-40. PubMed ID: 3440942 [TBL] [Abstract][Full Text] [Related]
34. GABA-induced responses in electrophysiologically characterized neurons within the rat rostro-ventrolateral medulla in vitro. Hayar A; Piguet P; Feltz P Brain Res; 1996 Feb; 709(2):173-83. PubMed ID: 8833753 [TBL] [Abstract][Full Text] [Related]
35. Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex. Kurt S; Crook JM; Ohl FW; Scheich H; Schulze H Hear Res; 2006 Feb; 212(1-2):224-35. PubMed ID: 16442250 [TBL] [Abstract][Full Text] [Related]
36. The pretectal cholinergic system is involved through two opposite ways in frog monocular OKN asymmetry. Jardon B; Bonaventure N Exp Brain Res; 1992; 90(1):72-8. PubMed ID: 1521617 [TBL] [Abstract][Full Text] [Related]
37. GABA-ergic mechanisms in the anticonvulsive activity of newly-synthesized barbiturates. I. Effects of barbiturates on the convulsive action of GABA-antagonists. Getova D; Georgiev V Acta Physiol Pharmacol Bulg; 1987; 13(3):43-50. PubMed ID: 3439474 [TBL] [Abstract][Full Text] [Related]
38. Suramin is a novel competitive antagonist selective to α1β2γ2 GABA Luo H; Wood K; Shi FD; Gao F; Chang Y Neuropharmacology; 2018 Oct; 141():148-157. PubMed ID: 30172846 [TBL] [Abstract][Full Text] [Related]
39. Interactions between three pyridazinyl-GABA derivatives and central GABA and glycine receptors in the rat, an in vivo microiontophoretic study. Michaud JC; Mienville JM; Chambon JP; Bizière K Neuropharmacology; 1986 Nov; 25(11):1197-203. PubMed ID: 3025764 [TBL] [Abstract][Full Text] [Related]
40. Glycine receptor subunit composition alters the action of GABA antagonists. Li P; Slaughter M Vis Neurosci; 2007; 24(4):513-21. PubMed ID: 17659095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]