These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38788149)
41. Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand. Rotejanaprasert C; Ekapirat N; Areechokchai D; Maude RJ Int J Health Geogr; 2020 Mar; 19(1):4. PubMed ID: 32126997 [TBL] [Abstract][Full Text] [Related]
42. Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Saldaña F; Flores-Arguedas H; Camacho-Gutiérrez JA; Barradas I Math Biosci Eng; 2020 Jun; 17(4):4165-4183. PubMed ID: 32987574 [TBL] [Abstract][Full Text] [Related]
43. Bayesian nowcasting with leading indicators applied to COVID-19 fatalities in Sweden. Bergström F; Günther F; Höhle M; Britton T PLoS Comput Biol; 2022 Dec; 18(12):e1010767. PubMed ID: 36477048 [TBL] [Abstract][Full Text] [Related]
44. Estimating the basic reproduction number for COVID-19 in Western Europe. Locatelli I; Trächsel B; Rousson V PLoS One; 2021; 16(3):e0248731. PubMed ID: 33730041 [TBL] [Abstract][Full Text] [Related]
45. Mitigating bias in estimating epidemic severity due to heterogeneity of epidemic onset and data aggregation. Krishnan RG; Cenci S; Bourouiba L Ann Epidemiol; 2022 Jan; 65():1-14. PubMed ID: 34419601 [TBL] [Abstract][Full Text] [Related]
46. Effects of Latency on Estimates of the COVID-19 Replication Number. Sadun L Bull Math Biol; 2020 Aug; 82(9):114. PubMed ID: 32816135 [TBL] [Abstract][Full Text] [Related]
47. Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios. Xu C; Dong Y; Yu X; Wang H; Tsamlag L; Zhang S; Chang R; Wang Z; Yu Y; Long R; Wang Y; Xu G; Shen T; Wang S; Zhang X; Wang H; Cai Y Front Med; 2020 Oct; 14(5):613-622. PubMed ID: 32468343 [TBL] [Abstract][Full Text] [Related]
48. Nearly Instantaneous Time-Varying Reproduction Number for Contagious Diseases-a Direct Approach Based on Nonlinear Regression. ŠaltytĖ Benth J; Benth FE; Nakstad ER J Comput Biol; 2024 Aug; 31(8):727-741. PubMed ID: 38923891 [TBL] [Abstract][Full Text] [Related]
49. A non-parametric method for determining epidemiological reproduction numbers. Pijpers FP J Math Biol; 2021 Mar; 82(5):37. PubMed ID: 33721104 [TBL] [Abstract][Full Text] [Related]
50. Estimating COVID-19 Hospitalizations in the United States With Surveillance Data Using a Bayesian Hierarchical Model: Modeling Study. Couture A; Iuliano AD; Chang HH; Patel NN; Gilmer M; Steele M; Havers FP; Whitaker M; Reed C JMIR Public Health Surveill; 2022 Jun; 8(6):e34296. PubMed ID: 35452402 [TBL] [Abstract][Full Text] [Related]
51. Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA. Burstyn I; Goldstein ND; Gustafson P BMC Med Res Methodol; 2020 Jun; 20(1):146. PubMed ID: 32505172 [TBL] [Abstract][Full Text] [Related]
52. Tracking the time course of reproduction number and lockdown's effect on human behaviour during SARS-CoV-2 epidemic: nonparametric estimation. Pillonetto G; Bisiacco M; Palù G; Cobelli C Sci Rep; 2021 May; 11(1):9772. PubMed ID: 33963235 [TBL] [Abstract][Full Text] [Related]
53. Modeling county level COVID-19 transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when fitting mechanistic models to time-varying processes. Das P; Igoe M; Lacy A; Farthing T; Timsina A; Lanzas C; Lenhart S; Odoi A; Lloyd AL Math Biosci; 2024 May; 371():109181. PubMed ID: 38537734 [TBL] [Abstract][Full Text] [Related]
54. Inference under superspreading: Determinants of SARS-CoV-2 transmission in Germany. Schmidt PW Stat Med; 2024 May; 43(10):1933-1954. PubMed ID: 38422989 [TBL] [Abstract][Full Text] [Related]
55. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Griffin JT; Garske T; Ghani AC; Clarke PS Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771 [TBL] [Abstract][Full Text] [Related]
56. Analysis of the impact of COVID-19 variants and vaccination on the time-varying reproduction number: statistical methods. Jang G; Kim J; Lee Y; Son C; Ko KT; Lee H Front Public Health; 2024; 12():1353441. PubMed ID: 39022412 [TBL] [Abstract][Full Text] [Related]
57. Estimation of local time-varying reproduction numbers in noisy surveillance data. Li W; Bulekova K; Gregor B; White LF; Kolaczyk ED Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210303. PubMed ID: 35965456 [TBL] [Abstract][Full Text] [Related]
58. A Bayesian approach to estimating COVID-19 incidence and infection fatality rates. Slater JJ; Bansal A; Campbell H; Rosenthal JS; Gustafson P; Brown PE Biostatistics; 2024 Apr; 25(2):354-384. PubMed ID: 36881693 [TBL] [Abstract][Full Text] [Related]
59. Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics. Hong H; Eom E; Lee H; Choi S; Choi B; Kim JK Nat Commun; 2024 Oct; 15(1):8734. PubMed ID: 39384847 [TBL] [Abstract][Full Text] [Related]
60. Modelling the early phase of the Belgian COVID-19 epidemic using a stochastic compartmental model and studying its implied future trajectories. Abrams S; Wambua J; Santermans E; Willem L; Kuylen E; Coletti P; Libin P; Faes C; Petrof O; Herzog SA; Beutels P; Hens N Epidemics; 2021 Jun; 35():100449. PubMed ID: 33799289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]