These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 3878838)
1. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage. Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838 [TBL] [Abstract][Full Text] [Related]
2. A model for signal transmission in an ear having hair cells with free-standing stereocilia. I. Empirical basis for model structure. Weiss TF; Peake WT; Rosowski JJ Hear Res; 1985; 20(2):131-8. PubMed ID: 4086380 [TBL] [Abstract][Full Text] [Related]
3. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage. Weiss TF; Leong R Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381 [TBL] [Abstract][Full Text] [Related]
4. Finite element modelling of sound transmission from outer to inner ear. Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576 [TBL] [Abstract][Full Text] [Related]
5. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. Peake WT; Ling A J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928 [TBL] [Abstract][Full Text] [Related]
8. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
9. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage. Weiss TF; Leong R Hear Res; 1985; 20(2):175-95. PubMed ID: 4086382 [TBL] [Abstract][Full Text] [Related]
10. A single-ossicle ear: Acoustic response and mechanical properties measured in duck. Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104 [TBL] [Abstract][Full Text] [Related]
11. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Teoh SW; Flandermeyer DT; Rosowski JJ Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106 [TBL] [Abstract][Full Text] [Related]
12. Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Rosowski JJ; Peake WT; White JR Hear Res; 1984 Feb; 13(2):141-58. PubMed ID: 6715262 [TBL] [Abstract][Full Text] [Related]
13. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. Puria S; Allen JB J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506 [TBL] [Abstract][Full Text] [Related]
14. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults. Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835 [TBL] [Abstract][Full Text] [Related]
15. Non-ossicular signal transmission in human middle ears: Experimental assessment of the "acoustic route" with perforated tympanic membranes. Voss SE; Rosowski JJ; Merchant SN; Peake WT J Acoust Soc Am; 2007 Oct; 122(4):2135-53. PubMed ID: 17902851 [TBL] [Abstract][Full Text] [Related]
16. A 3D-printed functioning anatomical human middle ear model. Kuru I; Maier H; Müller M; Lenarz T; Lueth TC Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730 [TBL] [Abstract][Full Text] [Related]
17. Eardrum and columella displacement in single ossicle ears under quasi-static pressure variations. Claes R; Muyshondt PGG; Van Assche F; Van Hoorebeke L; Aerts P; Dirckx JJJ Hear Res; 2018 Aug; 365():141-148. PubMed ID: 29804720 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Chang EW; Cheng JT; Röösli C; Kobler JB; Rosowski JJ; Yun SH Hear Res; 2013 Oct; 304():49-56. PubMed ID: 23811181 [TBL] [Abstract][Full Text] [Related]
19. Structures that contribute to middle-ear admittance in chinchilla. Rosowski JJ; Ravicz ME; Songer JE J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1287-311. PubMed ID: 16944166 [TBL] [Abstract][Full Text] [Related]
20. Effects of tympanic membrane perforation on middle ear transmission in gerbil. Stomackin G; Kidd S; Jung TT; Martin GK; Dong W Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]