These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38788883)

  • 1. Innovative eco-friendly hydroxyethylcellulose matrix-based composite for enhanced gas separation: Insights from performance and structural characterization.
    Sim H; Kang SW
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132576. PubMed ID: 38788883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of hydroxyethylcellulose phthalate-modified silver nanoparticles and their multifunctional applications as an efficient antibacterial, photocatalytic and mercury-selective sensing agent.
    Siddique AB; Amr D; Abbas A; Zohra L; Irfan MI; Alhoshani A; Ashraf S; Amin HMA
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128009. PubMed ID: 37995781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of functional group ratio in PEBAX copolymer on propylene/propane separation for facilitated olefin transport membranes.
    Jung KW; Kang SW
    Sci Rep; 2019 Aug; 9(1):11454. PubMed ID: 31391519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe
    Sultan M; Nagieb ZA; El-Masry HM; Taha GM
    Int J Biol Macromol; 2022 Jan; 196():180-193. PubMed ID: 34813782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of cellulose acetate and ZIF-8 mixed matrix membrane for CO
    Tanvidkar P; Jonnalagedda A; Kuncharam BVR
    Environ Technol; 2024 Jun; 45(14):2867-2878. PubMed ID: 36920270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between Functional Group and Formation of Nanoparticles in PEBAX/Ag Salt/Al Salt Complexes for Olefin Separation.
    Kim SY; Cho Y; Kang SW
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32192086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.
    Hafeez S; Fan X; Hussain A; Martín CF
    J Environ Sci (China); 2015 Sep; 35():163-171. PubMed ID: 26354705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-based technologies for biogas separations.
    Basu S; Khan AL; Cano-Odena A; Liu C; Vankelecom IF
    Chem Soc Rev; 2010 Feb; 39(2):750-68. PubMed ID: 20111791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.
    Li P; Wang Z; Li W; Liu Y; Wang J; Wang S
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15481-93. PubMed ID: 26121208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide separation with a two-dimensional polymer membrane.
    Schrier J
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3745-52. PubMed ID: 22734516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity.
    Ahmadizadegan H; Esmaielzadeh S; Ranjbar M; Marzban Z; Ghavas F
    Ultrason Sonochem; 2018 Mar; 41():538-550. PubMed ID: 29137785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a PVA/Chitosan/Glass Fiber Composite Membrane and the Performance in CO
    Yu Y; Xie C; Wu Y; Liu P; Wan Y; Sun X; Wang L; Zhang Y
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postcombustion Carbon Capture Using Thin-Film Composite Membranes.
    Liu M; Nothling MD; Webley PA; Fu Q; Qiao GG
    Acc Chem Res; 2019 Jul; 52(7):1905-1914. PubMed ID: 31246007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO
    Chamani F; Tanhaei B; Chenar MP
    Chemosphere; 2024 Mar; 351():141179. PubMed ID: 38224753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications.
    Jatoi AW; Ogasawara H; Kim IS; Ni QQ
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinylpyrrolidone)/KF electrolyte membranes for facilitated CO(2) transport.
    Oh JH; Kang YS; Kang SW
    Chem Commun (Camb); 2013 Oct; 49(86):10181-3. PubMed ID: 24052040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose acetate based sustainable nanostructured membranes for environmental remediation.
    Rehman A; Jahan Z; Sher F; Noor T; Khan Niazi MB; Akram MA; Sher EK
    Chemosphere; 2022 Nov; 307(Pt 1):135736. PubMed ID: 35850224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin Film Mixed Matrix Hollow Fiber Membrane Fabricated by Incorporation of Amine Functionalized Metal-Organic Framework for CO
    Li G; Kujawski W; Knozowska K; Kujawa J
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.