These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38788957)
21. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China. Wang YB; Wu PT; Engel BA; Sun SK Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819 [TBL] [Abstract][Full Text] [Related]
22. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia. Madugundu R; Al-Gaadi KA; Tola E; Hassaballa AA; Kayad AG PLoS One; 2018; 13(2):e0192830. PubMed ID: 29432446 [TBL] [Abstract][Full Text] [Related]
23. The water footprint of humanity. Hoekstra AY; Mekonnen MM Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3232-7. PubMed ID: 22331890 [TBL] [Abstract][Full Text] [Related]
24. [Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China.]. Zhang G; Lu F; Huang ZG; Chen S; Wang XK Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2875-2883. PubMed ID: 29732850 [TBL] [Abstract][Full Text] [Related]
25. A high-resolution assessment of climate change impact on water footprints of cereal production in India. Mali SS; Shirsath PB; Islam A Sci Rep; 2021 Apr; 11(1):8715. PubMed ID: 33888847 [TBL] [Abstract][Full Text] [Related]
26. Water footprints in Beijing, Tianjin and Hebei: A perspective from comparisons between urban and rural consumptions in different regions. Sun S Sci Total Environ; 2019 Jan; 647():507-515. PubMed ID: 30086502 [TBL] [Abstract][Full Text] [Related]
27. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade. Zhuo L; Mekonnen MM; Hoekstra AY Environ Int; 2016 Sep; 94():211-223. PubMed ID: 27262784 [TBL] [Abstract][Full Text] [Related]
28. [Temporal and Spatial Distribution, Utilization Status, and Carbon Emission Reduction Potential of Straw Resources in China]. Yang CW; Xing F; Zhu JC; Li RH; Zhang ZQ Huan Jing Ke Xue; 2023 Feb; 44(2):1149-1162. PubMed ID: 36775637 [TBL] [Abstract][Full Text] [Related]
29. The water footprint of bioenergy. Gerbens-Leenes W; Hoekstra AY; van der Meer TH Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10219-23. PubMed ID: 19497862 [TBL] [Abstract][Full Text] [Related]
30. [Carbon footprint of major grain crops in the middle and lower reaches of the Yangtze River during 2011-2020]. Zhang Y; Gu JY; Wang C; Wang WL; Zhang WY; Gu JF; Liu LJ; Yang JC; Zhang H Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3364-3372. PubMed ID: 38511376 [TBL] [Abstract][Full Text] [Related]
31. Analysis of Pollution Characteristics and Sources in Surface Water in Typical Crop-Producing Areas of Qinghai Province. Chen P; Fu F; Li J; Wang J; Sun Y; Wang R; Zhao L; Li X Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554274 [TBL] [Abstract][Full Text] [Related]
32. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley. Shtull-Trauring E; Aviani I; Avisar D; Bernstein N Front Plant Sci; 2016; 7():1877. PubMed ID: 28018408 [TBL] [Abstract][Full Text] [Related]
33. Water footprints and crop water use of 175 individual crops for 1990-2019 simulated with a global crop model. Mialyk O; Schyns JF; Booij MJ; Su H; Hogeboom RJ; Berger M Sci Data; 2024 Feb; 11(1):206. PubMed ID: 38355745 [TBL] [Abstract][Full Text] [Related]
34. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data. Zhuo D; Liu L; Yu H; Yuan C Environ Sci Pollut Res Int; 2018 Jan; 25(2):1683-1705. PubMed ID: 29101691 [TBL] [Abstract][Full Text] [Related]
35. Temporal variability of water footprint for cereal production and its controls in Saskatchewan, Canada. Zhao Y; Ding D; Si B; Zhang Z; Hu W; Schoenau J Sci Total Environ; 2019 Apr; 660():1306-1316. PubMed ID: 30743925 [TBL] [Abstract][Full Text] [Related]
36. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice. Zheng J; Wang W; Liu G; Ding Y; Cao X; Chen D; Engel BA Sci Total Environ; 2020 Oct; 739():140032. PubMed ID: 32758949 [TBL] [Abstract][Full Text] [Related]
37. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel. Shtull-Trauring E; Bernstein N Sci Total Environ; 2018 May; 622-623():1438-1447. PubMed ID: 29890609 [TBL] [Abstract][Full Text] [Related]
38. [Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013.]. Huang XM; Chen CQ; Chen MZ; Song ZW; Deng AX; Zhang J; Zheng CY; Zhang WJ Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3307-3315. PubMed ID: 29726158 [TBL] [Abstract][Full Text] [Related]
39. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Arunrat N; Sereenonchai S; Chaowiwat W; Wang C Sci Total Environ; 2022 Feb; 807(Pt 2):150741. PubMed ID: 34627910 [TBL] [Abstract][Full Text] [Related]
40. National assessment of spatiotemporal loss in agricultural pesticides and related potential exposure risks to water quality in China. Sun C; Chen L; Zhai L; Liu H; Jiang Y; Wang K; Jiao C; Shen Z Sci Total Environ; 2019 Aug; 677():98-107. PubMed ID: 31054443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]