BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38789092)

  • 41. al-BERT: a semi-supervised denoising technique for disease prediction.
    Tseng YC; Kuo CW; Peng WC; Hung CC
    BMC Med Inform Decis Mak; 2024 May; 24(1):127. PubMed ID: 38755570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Korean clinical entity recognition from diagnosis text using BERT.
    Kim YM; Lee TH
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Moving Biosurveillance Beyond Coded Data Using AI for Symptom Detection From Physician Notes: Retrospective Cohort Study.
    McMurry AJ; Zipursky AR; Geva A; Olson KL; Jones JR; Ignatov V; Miller TA; Mandl KD
    J Med Internet Res; 2024 Apr; 26():e53367. PubMed ID: 38573752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving text mining in plant health domain with GAN and/or pre-trained language model.
    Jiang S; Cormier S; Angarita R; Rousseaux F
    Front Artif Intell; 2023; 6():1072329. PubMed ID: 36895200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BioBERT and Similar Approaches for Relation Extraction.
    Bhasuran B
    Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. OpenDeID Pipeline for Unstructured Electronic Health Record Text Notes Based on Rules and Transformers: Deidentification Algorithm Development and Validation Study.
    Liu J; Gupta S; Chen A; Wang CK; Mishra P; Dai HJ; Wong ZS; Jonnagaddala J
    J Med Internet Res; 2023 Dec; 25():e48145. PubMed ID: 38055317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A clinical specific BERT developed using a huge Japanese clinical text corpus.
    Kawazoe Y; Shibata D; Shinohara E; Aramaki E; Ohe K
    PLoS One; 2021; 16(11):e0259763. PubMed ID: 34752490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Building large-scale registries from unstructured clinical notes using a low-resource natural language processing pipeline.
    Tavabi N; Pruneski J; Golchin S; Singh M; Sanborn R; Heyworth B; Landschaft A; Kimia A; Kiapour A
    Artif Intell Med; 2024 May; 151():102847. PubMed ID: 38658131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction.
    Zhang XC; Wu CK; Yang ZJ; Wu ZX; Yi JC; Hsieh CY; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying Symptom Information in Clinical Notes Using Natural Language Processing.
    Koleck TA; Tatonetti NP; Bakken S; Mitha S; Henderson MM; George M; Miaskowski C; Smaldone A; Topaz M
    Nurs Res; 2021 May-Jun 01; 70(3):173-183. PubMed ID: 33196504
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using ChatGPT-4 to Create Structured Medical Notes From Audio Recordings of Physician-Patient Encounters: Comparative Study.
    Kernberg A; Gold JA; Mohan V
    J Med Internet Res; 2024 Apr; 26():e54419. PubMed ID: 38648636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Information extraction from weakly structured radiological reports with natural language queries.
    Dada A; Ufer TL; Kim M; Hasin M; Spieker N; Forsting M; Nensa F; Egger J; Kleesiek J
    Eur Radiol; 2024 Jan; 34(1):330-337. PubMed ID: 37505252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study.
    Mitchell JR; Szepietowski P; Howard R; Reisman P; Jones JD; Lewis P; Fridley BL; Rollison DE
    J Med Internet Res; 2022 Mar; 24(3):e27210. PubMed ID: 35319481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A hybrid model to identify fall occurrence from electronic health records.
    Fu S; Thorsteinsdottir B; Zhang X; Lopes GS; Pagali SR; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; Sauver JS; Sohn S
    Int J Med Inform; 2022 Mar; 162():104736. PubMed ID: 35316697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multimodal fine-tuning of clinical language models for predicting COVID-19 outcomes.
    Henriksson A; Pawar Y; Hedberg P; Nauclér P
    Artif Intell Med; 2023 Dec; 146():102695. PubMed ID: 38042595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A BERT-based pretraining model for extracting molecular structural information from a SMILES sequence.
    Zheng X; Tomiura Y
    J Cheminform; 2024 Jun; 16(1):71. PubMed ID: 38898528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RadBERT: Adapting Transformer-based Language Models to Radiology.
    Yan A; McAuley J; Lu X; Du J; Chang EY; Gentili A; Hsu CN
    Radiol Artif Intell; 2022 Jul; 4(4):e210258. PubMed ID: 35923376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BERT-5mC: an interpretable model for predicting 5-methylcytosine sites of DNA based on BERT.
    Wang S; Liu Y; Liu Y; Zhang Y; Zhu X
    PeerJ; 2023; 11():e16600. PubMed ID: 38089911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-label classification of symptom terms from free-text bilingual adverse drug reaction reports using natural language processing.
    Chaichulee S; Promchai C; Kaewkomon T; Kongkamol C; Ingviya T; Sangsupawanich P
    PLoS One; 2022; 17(8):e0270595. PubMed ID: 35925971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.