These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38789211)
1. Eulerian- lagrangian dense discrete phase model (DDPM) of stenotic LAD coronary arteries in comparison with single phase modeling. Valizadeh Z; Shams M; Dehghani H Med Eng Phys; 2024 Jun; 128():104164. PubMed ID: 38789211 [TBL] [Abstract][Full Text] [Related]
2. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. Liu B; Zheng J; Bach R; Tang D Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370 [TBL] [Abstract][Full Text] [Related]
3. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement. Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730 [TBL] [Abstract][Full Text] [Related]
4. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Wong KKL; Wu J; Liu G; Huang W; Ghista DN Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006 [TBL] [Abstract][Full Text] [Related]
5. Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation. Carvalho V; Rodrigues N; Ribeiro R; Costa PF; Teixeira JCF; Lima RA; Teixeira SFCF Comput Methods Biomech Biomed Engin; 2021 May; 24(6):623-636. PubMed ID: 33225743 [TBL] [Abstract][Full Text] [Related]
6. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions. Kamangar S; Badruddin IA; Badarudin A; Nik-Ghazali N; Govindaraju K; Salman Ahmed NJ; Yunus Khan TM Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):365-372. PubMed ID: 27612619 [TBL] [Abstract][Full Text] [Related]
7. Boundary conditions in simulation of stenosed coronary arteries. Mohammadi H; Bahramian F Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262 [TBL] [Abstract][Full Text] [Related]
8. Influence of microcirculation load on FFR in coronary artery stenosis model. Xu H; Liu J; Zhou D; Jin Y BMC Cardiovasc Disord; 2020 Mar; 20(1):144. PubMed ID: 32199456 [TBL] [Abstract][Full Text] [Related]
9. Haemodynamic analysis of coronary artery bypass grafting in a non-linear deformable artery and Newtonian pulsatile blood flow. Kouhi E; Morsi YS; Masood SH Proc Inst Mech Eng H; 2008 Nov; 222(8):1273-87. PubMed ID: 19143420 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Chaichana T; Sun Z; Jewkes J Comput Math Methods Med; 2012; 2012():504367. PubMed ID: 22400051 [TBL] [Abstract][Full Text] [Related]
11. Patient-Specific Hemodynamics of New Coronary Artery Bypass Configurations. Rezaeimoghaddam M; Oguz GN; Ates MS; Bozkaya TA; Piskin S; Samaneh Lashkarinia S; Tenekecioglu E; Karagoz H; Pekkan K Cardiovasc Eng Technol; 2020 Dec; 11(6):663-678. PubMed ID: 33051831 [TBL] [Abstract][Full Text] [Related]
12. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases. Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336 [TBL] [Abstract][Full Text] [Related]
13. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions. Kamangar S; Badruddin IA; Govindaraju K; Nik-Ghazali N; Badarudin A; Viswanathan GN; Ahmed NJS; Khan TMY Med Biol Eng Comput; 2017 Aug; 55(8):1451-1461. PubMed ID: 28004229 [TBL] [Abstract][Full Text] [Related]
14. Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition. Biglarian M; Firoozabadi B; Saidi MS Comput Biol Med; 2021 Jun; 133():104411. PubMed ID: 33932644 [TBL] [Abstract][Full Text] [Related]
15. Fractional flow reserve-based 4D hemodynamic simulation of time-resolved blood flow in left anterior descending coronary artery. Zhao Y; Ping J; Yu X; Wu R; Sun C; Zhang M Clin Biomech (Bristol, Avon); 2019 Dec; 70():164-169. PubMed ID: 31525657 [TBL] [Abstract][Full Text] [Related]
16. Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries. Javadzadegan A; Yong AS; Chang M; Ng AC; Yiannikas J; Ng MK; Behnia M; Kritharides L Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H559-66. PubMed ID: 23241317 [TBL] [Abstract][Full Text] [Related]
17. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. Shanmugavelayudam SK; Rubenstein DA; Yin W J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029 [TBL] [Abstract][Full Text] [Related]
18. Visualization of multiphase pulsatile blood over single phase blood flow in a patient specific stenosed left coronary artery using image processing technique. Athani A; Ghazali NNN; Anjum Badruddin I; Kamangar S; Salman Ahmed NJ; Honnutagi A Biomed Mater Eng; 2023; 34(1):13-35. PubMed ID: 36278331 [TBL] [Abstract][Full Text] [Related]
19. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
20. Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan. Kamangar S; Salman Ahmed NJ; Badruddin IA; Al-Rawahi N; Husain A; Govindaraju K; Yunus Khan TM Biomed Mater Eng; 2019; 30(4):463-473. PubMed ID: 31498120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]