BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 38790030)

  • 1. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining.
    Gao Y; Zhong Z; Zhang D; Zhang J; Li YX
    Microbiome; 2024 May; 12(1):94. PubMed ID: 38790030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Diversity and Phage-Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing.
    Jaiani E; Kusradze I; Kokashvili T; Geliashvili N; Janelidze N; Kotorashvili A; Kotaria N; Guchmanidze A; Tediashvili M; Prangishvili D
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33202695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi.
    Kessler SC; Chooi YH
    Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thousands of previously unknown phages discovered in whole-community human gut metagenomes.
    Benler S; Yutin N; Antipov D; Rayko M; Shmakov S; Gussow AB; Pevzner P; Koonin EV
    Microbiome; 2021 Mar; 9(1):78. PubMed ID: 33781338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining.
    Agrawal P; Amir S; Deepak ; Barua D; Mohanty D
    J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RiPP antibiotics: biosynthesis and engineering potential.
    Hudson GA; Mitchell DA
    Curr Opin Microbiol; 2018 Oct; 45():61-69. PubMed ID: 29533845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolome-guided genome mining of RiPP natural products.
    Zdouc MM; van der Hooft JJJ; Medema MH
    Trends Pharmacol Sci; 2023 Aug; 44(8):532-541. PubMed ID: 37391295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-read powered viral metagenomics in the oligotrophic Sargasso Sea.
    Warwick-Dugdale J; Tian F; Michelsen ML; Cronin DR; Moore K; Farbos A; Chittick L; Bell A; Zayed AA; Buchholz HH; Bolanos LM; Parsons RJ; Allen MJ; Sullivan MB; Temperton B
    Nat Commun; 2024 May; 15(1):4089. PubMed ID: 38744831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides.
    Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omics-based strategies to discover novel classes of RiPP natural products.
    Kloosterman AM; Medema MH; van Wezel GP
    Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs).
    Han SW; Won HS
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides.
    Liu WQ; Ji X; Ba F; Zhang Y; Xu H; Huang S; Zheng X; Liu Y; Ling S; Jewett MC; Li J
    Nat Commun; 2024 May; 15(1):4336. PubMed ID: 38773100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.