These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 38790202)

  • 1. Insights into Salinity Tolerance in Wheat.
    Zhang Z; Xia Z; Zhou C; Wang G; Meng X; Yin P
    Genes (Basel); 2024 Apr; 15(5):. PubMed ID: 38790202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Wheat Salt Tolerance for Saline Agriculture.
    Li Z; Zhong F; Guo J; Chen Z; Song J; Zhang Y
    J Agric Food Chem; 2022 Dec; 70(48):14989-15006. PubMed ID: 36442507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.
    Takahashi F; Tilbrook J; Trittermann C; Berger B; Roy SJ; Seki M; Shinozaki K; Tester M
    PLoS One; 2015; 10(8):e0133322. PubMed ID: 26244554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant.
    Hong MJ; Ko CS; Kim JB; Kim DY
    PeerJ; 2024; 12():e17043. PubMed ID: 38464747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive strategy of allohexaploid wheat to long-term salinity stress.
    Bhanbhro N; Xiao B; Han L; Lu H; Wang H; Yang C
    BMC Plant Biol; 2020 May; 20(1):210. PubMed ID: 32397960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Discovery of miRNAs with Differential Expression Patterns in Responses to Salinity in the Two Contrasting Wheat Cultivars.
    Zeeshan M; Qiu CW; Naz S; Cao F; Wu F
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions.
    Hu P; Zheng Q; Luo Q; Teng W; Li H; Li B; Li Z
    BMC Plant Biol; 2021 Jan; 21(1):27. PubMed ID: 33413113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar.
    Amirbakhtiar N; Ismaili A; Ghaffari MR; Nazarian Firouzabadi F; Shobbar ZS
    PLoS One; 2019; 14(3):e0213305. PubMed ID: 30875373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat.
    Zhao Y; Zhang F; Mickan B; Wang D; Wang W
    Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress.
    Su P; Yan J; Li W; Wang L; Zhao J; Ma X; Li A; Wang H; Kong L
    BMC Plant Biol; 2020 Aug; 20(1):392. PubMed ID: 32847515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing salt stress-resilient crops: Current progress and future challenges.
    Liang X; Li J; Yang Y; Jiang C; Guo Y
    J Integr Plant Biol; 2024 Mar; 66(3):303-329. PubMed ID: 38108117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.
    Xiong H; Guo H; Xie Y; Zhao L; Gu J; Zhao S; Li J; Liu L
    Sci Rep; 2017 Jun; 7(1):2731. PubMed ID: 28578401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-dimensional evaluation of response to salt stress in wheat.
    Dadshani S; Sharma RC; Baum M; Ogbonnaya FC; Léon J; Ballvora A
    PLoS One; 2019; 14(9):e0222659. PubMed ID: 31568491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops.
    Kumar P; Choudhary M; Halder T; Prakash NR; Singh V; V VT; Sheoran S; T RK; Longmei N; Rakshit S; Siddique KHM
    Heredity (Edinb); 2022 Jun; 128(6):497-518. PubMed ID: 35249098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat.
    Zheng M; Lin J; Liu X; Chu W; Li J; Gao Y; An K; Song W; Xin M; Yao Y; Peng H; Ni Z; Sun Q; Hu Z
    Plant Physiol; 2021 Aug; 186(4):1951-1969. PubMed ID: 33890670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity.
    Siddiqui MN; Mostofa MG; Akter MM; Srivastava AK; Sayed MA; Hasan MS; Tran LP
    Chemosphere; 2017 Nov; 187():385-394. PubMed ID: 28858718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems.
    Wahid I; Kumari S; Ahmad R; Hussain SJ; Alamri S; Siddiqui MH; Khan MIR
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33147820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis of synthetic and common wheat in response to salt stress.
    Nakayama R; Safi MT; Ahmadzai W; Sato K; Kawaura K
    Sci Rep; 2022 Jul; 12(1):11534. PubMed ID: 35798819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms.
    Aycan M; Baslam M; Asiloglu R; Mitsui T; Yildiz M
    Plant Physiol Biochem; 2021 Sep; 166():314-327. PubMed ID: 34147724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).
    Zhang Y; Liu Z; Khan AA; Lin Q; Han Y; Mu P; Liu Y; Zhang H; Li L; Meng X; Ni Z; Xin M
    Sci Rep; 2016 Feb; 6():21476. PubMed ID: 26892368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.