These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 38790982)
41. Transcutaneous oxygen tension (TcPO2) in the testing period of spinal cord stimulation (SCS) in critical limb ischemia of the lower extremities. Petrakis IE; Sciacca V Int Surg; 1999; 84(2):122-8. PubMed ID: 10408282 [TBL] [Abstract][Full Text] [Related]
42. Peripheral endothelial dysfunction in patients suffering from acute schizophrenia: a potential marker for cardiovascular morbidity? Israel AK; Seeck A; Boettger MK; Rachow T; Berger S; Voss A; Bär KJ Schizophr Res; 2011 May; 128(1-3):44-50. PubMed ID: 21371864 [TBL] [Abstract][Full Text] [Related]
43. Spectral analysis of laser speckle contrast imaging and infrared thermography to assess skin microvascular reactive hyperemia. Tang Y; Xu F; Lei P; Li G; Tan Z Skin Res Technol; 2023 Apr; 29(4):e13308. PubMed ID: 37113098 [TBL] [Abstract][Full Text] [Related]
44. Method optimization on the use of postocclusive hyperemia model to assess microvascular function. Yvonne-Tee GB; Rasool AH; Halim AS; Wong AR; Rahman AR Clin Hemorheol Microcirc; 2008; 38(2):119-33. PubMed ID: 18198413 [TBL] [Abstract][Full Text] [Related]
45. Transcutaneous oxygen pressure measured at two different electrode core temperatures in healthy volunteers and patients with arterial occlusive disease. Creutzig A; Dau D; Caspary L; Alexander K Int J Microcirc Clin Exp; 1987; 5(4):373-80. PubMed ID: 3557822 [TBL] [Abstract][Full Text] [Related]
46. Assessment of tissue perfusion and vascular function in mice by scanning laser Doppler perfusion imaging. Leo F; Krenz T; Wolff G; Weidenbach M; Heiss C; Kelm M; Isakson B; Cortese-Krott MM Biochem Pharmacol; 2020 Jun; 176():113893. PubMed ID: 32135157 [TBL] [Abstract][Full Text] [Related]
47. The impact of transcutaneous oxygen pressure measurement in patients with suspected critical lower limb ischemia. Rosfors S; Kanni L; Nyström T Int Angiol; 2016 Oct; 35(5):492-7. PubMed ID: 26222147 [TBL] [Abstract][Full Text] [Related]
48. Type 2 diabetes impairs vascular responsiveness to nitric oxide, but not the venoarteriolar reflex or post-occlusive reactive hyperaemia in forearm skin. Fujii N; McGarr GW; Amano T; Nishiyasu T; Sigal RJ; Kenny GP Exp Dermatol; 2021 Dec; 30(12):1807-1813. PubMed ID: 34114706 [TBL] [Abstract][Full Text] [Related]
49. Assessment of cutaneous microcirculation in unaffected skin regions by transcutaneous oxygen saturation monitoring and Laser Doppler flowmetry in systemic sclerosis. Broz P; Aschwanden M; Partovi S; Schulte AC; Benz D; Takes M; Walker UA; Bilecen D; Jaeger KA; Staub D Clin Hemorheol Microcirc; 2015; 60(3):263-71. PubMed ID: 23370157 [TBL] [Abstract][Full Text] [Related]
50. Reproducibility and normalization of reactive hyperemia using laser speckle contrast imaging. Shirazi BR; Valentine RJ; Lang JA PLoS One; 2021; 16(1):e0244795. PubMed ID: 33412561 [TBL] [Abstract][Full Text] [Related]
51. Effects of alpha-trinositol on peripheral circulation in diabetic patients with critical limb ischaemia. A pilot study using laser Doppler fluxmetry, transcutaneous oxygen tension measurements and dynamic capillaroscopy. Nilsson L; Apelqvist J; Edvinsson L Eur J Vasc Endovasc Surg; 1998 Apr; 15(4):331-6. PubMed ID: 9610346 [TBL] [Abstract][Full Text] [Related]
52. Comparison of laser-Doppler flowmetry with biochemical indicators of endothelial dysfunction related to early microangiopathy in Type 1 diabetic patients. Skrha J; Prázný M; Haas T; Kvasnicka J; Kalvodová B J Diabetes Complications; 2001; 15(5):234-40. PubMed ID: 11522496 [TBL] [Abstract][Full Text] [Related]
53. Day-to-day variability of transcutaneous oxygen tension in patients with diabetes mellitus and peripheral arterial occlusive disease. Jörneskog G; Djavani K; Brismar K J Vasc Surg; 2001 Aug; 34(2):277-82. PubMed ID: 11496280 [TBL] [Abstract][Full Text] [Related]
54. Influence of diabetic neuropathy on skin microcirculation assessed by transcutaneous oxymetry. Caspary L; Abicht J; Creutzig A; Mitzkat HJ; Alexander K Vasa; 1995; 24(4):340-6. PubMed ID: 8533444 [TBL] [Abstract][Full Text] [Related]
55. Role of Laser Doppler for the Evaluation of Pedal Microcirculatory Function in Diabetic Neuropathy Patients. Park HS; Yun HM; Jung IM; Lee T Microcirculation; 2016 Jan; 23(1):44-52. PubMed ID: 26543005 [TBL] [Abstract][Full Text] [Related]
56. In diabetic Charcot neuroarthropathy impaired microvascular function is related to long lasting metabolic control and low grade inflammatory process. Araszkiewicz A; Soska J; Borucka K; Olszewska M; Niedzwiecki P; Wierusz-Wysocka B; Zozulinska-Ziolkiewicz D Microvasc Res; 2015 Sep; 101():143-7. PubMed ID: 26239695 [TBL] [Abstract][Full Text] [Related]
58. Microcirculatory dysfunction in chronic venous insufficiency (CVI). Jünger M; Steins A; Hahn M; Häfner HM Microcirculation; 2000; 7(6 Pt 2):S3-12. PubMed ID: 11151969 [TBL] [Abstract][Full Text] [Related]
59. Transcutaneous oxygen pressure as a predictor for short-term survival in patients with type 2 diabetes and foot ulcers: a comparison with ankle-brachial index and toe blood pressure. Fagher K; Katzman P; Löndahl M Acta Diabetol; 2018 Aug; 55(8):781-788. PubMed ID: 29707757 [TBL] [Abstract][Full Text] [Related]
60. The role of microcirculatory techniques in patients with diabetic foot syndrome. Lawall H; Amann B; Rottmann M; Angelkort B Vasa; 2000 Aug; 29(3):191-7. PubMed ID: 11037717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]