These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
727 related articles for article (PubMed ID: 38791164)
41. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. Moon SJ; Kim TH; Yoon SY; Chung JH; Hwang HJ PLoS One; 2015; 10(6):e0130740. PubMed ID: 26083479 [TBL] [Abstract][Full Text] [Related]
42. Advanced oxidation protein products contribute to chronic kidney disease-induced muscle atrophy by inducing oxidative stress via CD36/NADPH oxidase pathway. Kato H; Watanabe H; Imafuku T; Arimura N; Fujita I; Noguchi I; Tanaka S; Nakano T; Tokumaru K; Enoki Y; Maeda H; Hino S; Tanaka M; Matsushita K; Fukagawa M; Maruyama T J Cachexia Sarcopenia Muscle; 2021 Dec; 12(6):1832-1847. PubMed ID: 34599649 [TBL] [Abstract][Full Text] [Related]
43. Organ Crosstalk Contributes to Muscle Wasting in Chronic Kidney Disease. Wang XH; Price SR Semin Nephrol; 2023 Mar; 43(2):151409. PubMed ID: 37611335 [TBL] [Abstract][Full Text] [Related]
44. Uremic Sarcopenia. Mohanasundaram S; Fernando E Indian J Nephrol; 2022; 32(5):399-405. PubMed ID: 36568601 [TBL] [Abstract][Full Text] [Related]
45. Indoxyl Sulfate Might Play a Role in Sarcopenia, While Myostatin Is an Indicator of Muscle Mass in Patients with Chronic Kidney Disease: Analysis from the RECOVERY Study. Lee SM; Han MY; Kim SH; Cha RH; Kang SH; Kim JC; An WS Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287929 [TBL] [Abstract][Full Text] [Related]
46. Kidney function in cachexia and sarcopenia: Facts and numbers. Okamura M; Konishi M; Butler J; Kalantar-Zadeh K; von Haehling S; Anker SD J Cachexia Sarcopenia Muscle; 2023 Aug; 14(4):1589-1595. PubMed ID: 37222019 [TBL] [Abstract][Full Text] [Related]
47. Signal regulatory protein alpha initiates cachexia through muscle to adipose tissue crosstalk. Wu J; Dong J; Verzola D; Hruska K; Garibotto G; Hu Z; Mitch WE; Thomas SS J Cachexia Sarcopenia Muscle; 2019 Dec; 10(6):1210-1227. PubMed ID: 31507080 [TBL] [Abstract][Full Text] [Related]
48. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Wall BT; Dirks ML; van Loon LJ Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422 [TBL] [Abstract][Full Text] [Related]
49. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: a UK Biobank study. Wilkinson TJ; Miksza J; Yates T; Lightfoot CJ; Baker LA; Watson EL; Zaccardi F; Smith AC J Cachexia Sarcopenia Muscle; 2021 Jun; 12(3):586-598. PubMed ID: 33949807 [TBL] [Abstract][Full Text] [Related]
50. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Pereira RA; Cordeiro AC; Avesani CM; Carrero JJ; Lindholm B; Amparo FC; Amodeo C; Cuppari L; Kamimura MA Nephrol Dial Transplant; 2015 Oct; 30(10):1718-25. PubMed ID: 25999376 [TBL] [Abstract][Full Text] [Related]
51. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs. Robinson KA; Baker LA; Graham-Brown MPM; Watson EL Nephrol Dial Transplant; 2020 Sep; 35(9):1469-1478. PubMed ID: 31603229 [TBL] [Abstract][Full Text] [Related]
52. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Verzola D; Barisione C; Picciotto D; Garibotto G; Koppe L Kidney Int; 2019 Mar; 95(3):506-517. PubMed ID: 30598193 [TBL] [Abstract][Full Text] [Related]
53. Muscle mass and plasma myostatin after exercise training: a substudy of Renal Exercise (RENEXC)-a randomized controlled trial. Zhou Y; Hellberg M; Hellmark T; Höglund P; Clyne N Nephrol Dial Transplant; 2021 Jan; 36(1):95-103. PubMed ID: 31848626 [TBL] [Abstract][Full Text] [Related]
54. Mechanisms of muscle wasting in chronic kidney disease. Wang XH; Mitch WE Nat Rev Nephrol; 2014 Sep; 10(9):504-16. PubMed ID: 24981816 [TBL] [Abstract][Full Text] [Related]
55. Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Su Z; Klein JD; Du J; Franch HA; Zhang L; Hassounah F; Hudson MB; Wang XH Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1128-F1140. PubMed ID: 28381463 [TBL] [Abstract][Full Text] [Related]
56. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Gamboa JL; Billings FT; Bojanowski MT; Gilliam LA; Yu C; Roshanravan B; Roberts LJ; Himmelfarb J; Ikizler TA; Brown NJ Physiol Rep; 2016 May; 4(9):. PubMed ID: 27162261 [TBL] [Abstract][Full Text] [Related]
57. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. Zhang L; Wang XH; Wang H; Du J; Mitch WE J Am Soc Nephrol; 2010 Mar; 21(3):419-27. PubMed ID: 20056750 [TBL] [Abstract][Full Text] [Related]
58. Magnoliae Cortex Alleviates Muscle Wasting by Modulating M2 Macrophages in a Cisplatin-Induced Sarcopenia Mouse Model. Hong M; Han IH; Choi I; Cha N; Kim W; Kim SK; Bae H Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804803 [TBL] [Abstract][Full Text] [Related]
59. Transcription factor NRF2 as potential therapeutic target for preventing muscle wasting in aging chronic kidney disease patients. Gómez-García EF; Del Campo FM; Cortés-Sanabria L; Mendoza-Carrera F; Avesani CM; Stenvinkel P; Lindholm B; Cueto-Manzano AM J Nephrol; 2022 Dec; 35(9):2215-2225. PubMed ID: 36322291 [TBL] [Abstract][Full Text] [Related]