These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38791308)

  • 1. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of
    Wang J; Cao Y; Shi D; Zhang Z; Li X; Chen C
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum.
    Yun Y; Yin D; Dawood DH; Liu X; Chen Y; Ma Z
    Fungal Genet Biol; 2014 Jul; 68():60-70. PubMed ID: 24785759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum.
    Liu X; Jiang J; Yin Y; Ma Z
    Mol Plant Pathol; 2013 Jan; 14(1):71-83. PubMed ID: 22947191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum.
    Jiang J; Liu X; Yin Y; Ma Z
    PLoS One; 2011; 6(11):e28291. PubMed ID: 22140571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and
    Li C; Fan S; Wen Y; Tan Z; Liu C
    J Agric Food Chem; 2021 Feb; 69(5):1684-1692. PubMed ID: 33522237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.
    Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z
    Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses.
    Becher R; Weihmann F; Deising HB; Wirsel SG
    BMC Genomics; 2011 Jan; 12():52. PubMed ID: 21255412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of Fusarium graminearum treated by the fungicide JS399-19.
    Hou Y; Zheng Z; Xu S; Chen C; Zhou M
    Pestic Biochem Physiol; 2013 Sep; 107(1):86-92. PubMed ID: 25149240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions.
    Diao X; Han Y; Liu C
    J Agric Food Chem; 2018 Apr; 66(14):3637-3643. PubMed ID: 29562133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole.
    Liu X; Jiang J; Shao J; Yin Y; Ma Z
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1105-14. PubMed ID: 19820924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China.
    Yin Y; Liu X; Li B; Ma Z
    Phytopathology; 2009 May; 99(5):487-97. PubMed ID: 19351244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FgVps39-FgVam7-FgSso1 Complex Mediates Vesicle Trafficking and Is Important for the Development and Virulence of Fusarium graminearum.
    Li B; Liu L; Li Y; Dong X; Zhang H; Chen H; Zheng X; Zhang Z
    Mol Plant Microbe Interact; 2017 May; 30(5):410-422. PubMed ID: 28437167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum.
    Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF
    Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum.
    Lou Y; Zhang J; Wang G; Fang W; Wang S; Abubakar YS; Zhou J; Wang Z; Zheng W
    mBio; 2021 Dec; 12(6):e0232421. PubMed ID: 34933449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum.
    Liu N; Fan F; Qiu D; Jiang L
    Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production.
    Becher R; Hettwer U; Karlovsky P; Deising HB; Wirsel SG
    Phytopathology; 2010 May; 100(5):444-53. PubMed ID: 20373965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intron-mediated regulation of β-tubulin genes expression affects the sensitivity to carbendazim in Fusarium graminearum.
    Li Y; Chen D; Luo S; Zhu Y; Jia X; Duan Y; Zhou M
    Curr Genet; 2019 Aug; 65(4):1057-1069. PubMed ID: 30941494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The calcium-calcineurin and high-osmolarity glycerol pathways co-regulate tebuconazole sensitivity and pathogenicity in Fusarium graminearum.
    Wang H; Gai Y; Zhao Y; Wang M; Ma Z
    Pestic Biochem Physiol; 2023 Feb; 190():105311. PubMed ID: 36740345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The b-ZIP transcription factor FgTfmI is required for the fungicide phenamacril tolerance and pathogenecity in Fusarium graminearum.
    Liu N; Wu S; Dawood DH; Tang G; Zhang C; Liang J; Chen Y; Ma Z
    Pest Manag Sci; 2019 Dec; 75(12):3312-3322. PubMed ID: 31025482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum.
    Son H; Kim MG; Min K; Lim JY; Choi GJ; Kim JC; Chae SK; Lee YW
    Eukaryot Cell; 2014 Jan; 13(1):87-98. PubMed ID: 24186953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.