BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38791320)

  • 21. Oogenesis and ovarian histology in two populations of the viviparous lizard Sceloporus grammicus (Squamata: Phrynosomatidae) from the central Mexican Plateau.
    Lozano A; Ramírez-Bautista A; Uribe MC
    J Morphol; 2014 Aug; 275(8):949-60. PubMed ID: 24634107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing.
    Sacco-Bubulya P; Spector DL
    J Cell Biol; 2002 Feb; 156(3):425-36. PubMed ID: 11827980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cajal bodies and interchromatin granule clusters in cricket oocytes: composition, dynamics and interactions.
    Stepanova IS; Bogolyubov DS; Skovorodkin IN; Parfenov VN
    Cell Biol Int; 2007 Mar; 31(3):203-14. PubMed ID: 17123844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2.
    Saitoh N; Sakamoto C; Hagiwara M; Agredano-Moreno LT; Jiménez-García LF; Nakao M
    Mol Biol Cell; 2012 Mar; 23(6):1115-28. PubMed ID: 22262462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RCC1 and nuclear organization.
    Huang S; Mayeda A; Krainer AR; Spector DL
    Mol Biol Cell; 1997 Jun; 8(6):1143-57. PubMed ID: 9201722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maternal provision and embryonic uptake of calcium in an oviparous and a placentotrophic viviparous Australian lizard (Lacertilia: Scincidae).
    Stewart JR; Ecay TW; Garland CP; Fregoso SP; Price EK; Herbert JF; Thompson MB
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):202-8. PubMed ID: 19223019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life-history trade-offs with viviparity.
    Recknagel H; Elmer KR
    Oecologia; 2019 May; 190(1):85-98. PubMed ID: 31062164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sm and U2B" proteins redistribute to different nuclear domains in dormant and proliferating onion cells.
    Cui P; Moreno Díaz de la Espina S
    Planta; 2003 May; 217(1):21-31. PubMed ID: 12721845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The MUC1 extracellular domain subunit is found in nuclear speckles and associates with spliceosomes.
    Kumar P; Lindberg L; Thirkill TL; Ji JW; Martsching L; Douglas GC
    PLoS One; 2012; 7(8):e42712. PubMed ID: 22905162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speculating on the Roles of Nuclear Speckles: How RNA-Protein Nuclear Assemblies Affect Gene Expression.
    Hasenson SE; Shav-Tal Y
    Bioessays; 2020 Oct; 42(10):e2000104. PubMed ID: 32720312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viviparous lizard, Eulamprus tympanum, shows changes in the uterine surface epithelium during early pregnancy that are similar to the plasma membrane transformation of mammals.
    Hosie MJ; Adams SM; Thompson MB; Murphy CR
    J Morphol; 2003 Dec; 258(3):346-57. PubMed ID: 14584036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting of U2AF65 to sites of active splicing in the nucleus.
    Gama-Carvalho M; Krauss RD; Chiang L; Valcárcel J; Green MR; Carmo-Fonseca M
    J Cell Biol; 1997 Jun; 137(5):975-87. PubMed ID: 9166400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.
    Zhang Q; Kota KP; Alam SG; Nickerson JA; Dickinson RB; Lele TP
    J Cell Physiol; 2016 Jun; 231(6):1269-75. PubMed ID: 26496460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental study of the gestation costs in a viviparous lizard: a hormonal manipulation.
    Bleu J; Massot M; Haussy C; Meylan S
    Physiol Biochem Zool; 2013; 86(6):690-701. PubMed ID: 24241066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compartmentalization of RNA processing factors within nuclear speckles.
    Mintz PJ; Spector DL
    J Struct Biol; 2000 Apr; 129(2-3):241-51. PubMed ID: 10806074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential dynamics of splicing factor SC35 during the cell cycle.
    Tripathi K; Parnaik VK
    J Biosci; 2008 Sep; 33(3):345-54. PubMed ID: 19005234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts.
    Heath E; Sablitzky F; Morgan GT
    Chromosome Res; 2010 Dec; 18(8):851-72. PubMed ID: 21086038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Invasive implantation and intimate placental associations in a placentotrophic African lizard, Trachylepis ivensi (scincidae).
    Blackburn DG; Flemming AF
    J Morphol; 2012 Feb; 273(2):137-59. PubMed ID: 21956253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles.
    Dye BT; Patton JG
    Exp Cell Res; 2001 Feb; 263(1):131-44. PubMed ID: 11161712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subnuclear localization and dynamics of the Pre-mRNA 3' end processing factor mammalian cleavage factor I 68-kDa subunit.
    Cardinale S; Cisterna B; Bonetti P; Aringhieri C; Biggiogera M; Barabino SM
    Mol Biol Cell; 2007 Apr; 18(4):1282-92. PubMed ID: 17267687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.