These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 38792029)
1. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Li Y; Li M; Hu L; Zhang B Molecules; 2024 May; 29(10):. PubMed ID: 38792029 [TBL] [Abstract][Full Text] [Related]
2. Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Zheng X; Yao T; Zhu Y; Shi S Biosens Bioelectron; 2015 Apr; 66():103-8. PubMed ID: 25460889 [TBL] [Abstract][Full Text] [Related]
3. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Zhang B; Wei C Anal Bioanal Chem; 2020 Apr; 412(11):2529-2536. PubMed ID: 32043202 [TBL] [Abstract][Full Text] [Related]
4. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Lan GY; Huang CC; Chang HT Chem Commun (Camb); 2010 Feb; 46(8):1257-9. PubMed ID: 20449269 [TBL] [Abstract][Full Text] [Related]
5. A Highly Sensitive and Selective Fluorescent Sensor for Folic Acid Detection Based on D-penicillamine Stabilized Ag/Cu Alloy Nanoclusters. Mei Zhang S; Xue Dong J; Li Wu X; Sen Zhao Y; Lei Li Y; Lin Wang S; Yang Y; An M; Su M; Ya Shi R; Feng Gao Z Chembiochem; 2024 Jul; 25(14):e202400254. PubMed ID: 38757240 [TBL] [Abstract][Full Text] [Related]
6. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method. Liu J; Ren X; Meng X; Fang Z; Tang F Nanoscale; 2013 Oct; 5(20):10022-8. PubMed ID: 24056730 [TBL] [Abstract][Full Text] [Related]
7. A Fluorescence Enhancement Sensor Based on Silver Nanoclusters Protected by Rich-G-DNA for ATP Detection. Li Y; Ren J; Meng Z; Zhang B Molecules; 2024 Sep; 29(18):. PubMed ID: 39339485 [TBL] [Abstract][Full Text] [Related]
8. Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Zhang P; Wang Y; Chang Y; Xiong ZH; Huang CZ Biosens Bioelectron; 2013 Nov; 49():433-7. PubMed ID: 23810912 [TBL] [Abstract][Full Text] [Related]
9. Label-free dsDNA-Cu NPs-based fluorescent probe for highly sensitive detection of L-histidine. Liu YR; Hu R; Liu T; Zhang XB; Tan W; Shen GL; Yu RQ Talanta; 2013 Mar; 107():402-7. PubMed ID: 23598241 [TBL] [Abstract][Full Text] [Related]
10. Cytosine-rich ssDNA-templated fluorescent silver and copper/silver nanoclusters: optical properties and sensitive detection for mercury(II). Mao A; Wei C Mikrochim Acta; 2019 Jul; 186(8):541. PubMed ID: 31317329 [TBL] [Abstract][Full Text] [Related]
11. A DNA-scaffolded silver nanocluster/Cu²⁺ ensemble as a turn-on fluorescent probe for histidine. Zhou Y; Zhou T; Zhang M; Shi G Analyst; 2014 Jun; 139(12):3122-6. PubMed ID: 24788120 [TBL] [Abstract][Full Text] [Related]
12. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Su YT; Lan GY; Chen WY; Chang HT Anal Chem; 2010 Oct; 82(20):8566-72. PubMed ID: 20873802 [TBL] [Abstract][Full Text] [Related]
13. Label-Free Fluorescent Turn-On Glyphosate Sensing Based on DNA-Templated Silver Nanoclusters. Cheng Y; Li G; Huang X; Qian Z; Peng C Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290969 [TBL] [Abstract][Full Text] [Related]
14. Integrated logic gate for fluorescence turn-on detection of histidine and cysteine based on Ag/Au bimetallic nanoclusters-Cu²⁺ ensemble. Sun J; Yang F; Zhao D; Chen C; Yang X ACS Appl Mater Interfaces; 2015 Apr; 7(12):6860-6. PubMed ID: 25761537 [TBL] [Abstract][Full Text] [Related]
15. Ni(2+)-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. He Y; Wang X; Zhu J; Zhong S; Song G Analyst; 2012 Sep; 137(17):4005-9. PubMed ID: 22766627 [TBL] [Abstract][Full Text] [Related]
16. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133 [TBL] [Abstract][Full Text] [Related]
18. Sensitive signal-on fluorescent sensing for copper ions based on the polyethyleneimine-capped silver nanoclusters-cysteine system. Zhang N; Qu F; Luo HQ; Li NB Anal Chim Acta; 2013 Aug; 791():46-50. PubMed ID: 23890605 [TBL] [Abstract][Full Text] [Related]
19. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225 [TBL] [Abstract][Full Text] [Related]
20. Silver Nanoclusters as Label Free Non-enzymatic Fast Glucose Assay with the Fluorescent Enhancement Signal. Moosavi R; Alizadeh N J Fluoresc; 2024 Jul; 34(4):1865-1876. PubMed ID: 37656303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]