These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38792189)

  • 1. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate.
    Tong Z; Li L; Li Y; Wang Q; Cheng X
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement.
    Yazlak MG; Khan QA; Steinhart M; Duran H
    ACS Omega; 2022 Jul; 7(28):24669-24678. PubMed ID: 35874251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP.
    Wu Y; Li J; Wang M; Wang H; Zhong Y; Zhao Y; Wei M; Li Y
    RSC Adv; 2018 May; 8(34):19251-19260. PubMed ID: 35539666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Evaluation of a Ternary Mixture of Molten Salts in Solar Thermal Storage Systems: Impact on Thermophysical Properties and Corrosion.
    Henríquez M; Reinoso-Burrows JC; Pastén R; Soto C; Duran C; Olivares D; Guerreiro L; Cardemil JM; Galleguillos Madrid FM; Fuentealba E
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermophysical Properties' Enhancement of LiNO
    Zhu C; Xu M; Tian B; Gu M; Gong L
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the micromorphology and thermophysical properties of NaNO
    Liu H; Yang J; Zheng H; Chen Y; Li Y
    Micron; 2021 Sep; 148():103103. PubMed ID: 34134050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of molten salt materials using metal chlorides for solar thermal storage.
    Dunlop TO; Jarvis DJ; Voice WE; Sullivan JH
    Sci Rep; 2018 May; 8(1):8190. PubMed ID: 29844342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots.
    Hamdy E; Saad L; Abulfotuh F; Soliman M; Ebrahim S
    ACS Omega; 2020 Sep; 5(34):21345-21354. PubMed ID: 32905410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications.
    Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of NaCl-MgCl
    Dong W; Tian H; Zhang W; Zhou JJ; Pang X
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):530-539. PubMed ID: 38126774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of the stabilization of solar salt at 620 C with a semi-closed configuration in a 100 kg-scale.
    Kunkel S; Seeliger F; Hanke A; Bauer T; Bonk A
    Heliyon; 2023 Dec; 9(12):e22363. PubMed ID: 38213595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Binary Salt Mixture LiCl-LiOH for Thermal Energy Storage.
    Hassan N; Minakshi M; Ruprecht J; Liew WYH; Jiang ZT
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar Salt with Carbon Nanotubes as a Potential Phase Change Material for High-Temperature Applications: Investigations on Thermal Properties and Chemical Stability.
    Vigneshwaran P; Shaik S; Suresh S; Abbas M; Saleel CA; Cuce E
    ACS Omega; 2023 May; 8(20):17563-17572. PubMed ID: 37251134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.