BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38792726)

  • 21. Assessing and Minimizing the Development and Spread of Fire Blight Following Mechanical Thinning and Pruning in Apple Orchards.
    Wallis AE; Miranda-Sazo MR; Cox KD
    Plant Dis; 2021 Mar; 105(3):650-659. PubMed ID: 32804041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.
    Luo C; Zhou H; Zou J; Wang X; Zhang R; Xiang Y; Chen Z
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bee Vectoring: Development of the Japanese Orchard Bee as a Targeted Delivery System of Biological Control Agents for Fire Blight Management.
    Joshi NK; Ngugi HK; Biddinger DJ
    Pathogens; 2020 Jan; 9(1):. PubMed ID: 31947931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fire blight resistance, irrigation and conducive wet weather improve
    Santander RD; Khodadadi F; Meredith CL; Rađenović Ž; Clements J; Aćimović SG
    Front Microbiol; 2022; 13():1009364. PubMed ID: 36329850
    [No Abstract]   [Full Text] [Related]  

  • 25. Development of a novel biological control agent targeting the phytopathogen
    Dagher F; Olishevska S; Philion V; Zheng J; Déziel E
    Heliyon; 2020 Oct; 6(10):e05222. PubMed ID: 33102848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacteriocin Serratine-P as a biological tool in the control of fire blight Erwinia amylovora.
    Schoofs H; Vandebroek K; Pierrard A; Thonart P; Lepoivre P; Beaudry T; Deckers T
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):361-8. PubMed ID: 12701444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First European
    Biosca EG; Delgado Santander R; Morán F; Figàs-Segura À; Vázquez R; Català-Senent JF; Álvarez B
    Biology (Basel); 2024 Mar; 13(3):. PubMed ID: 38534446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.
    Zeriouh H; de Vicente A; Pérez-García A; Romero D
    Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple.
    Ryu DK; Adhikari M; Choi DH; Jun KJ; Kim DH; Kim CR; Kang MK; Park DH
    Plant Pathol J; 2023 Feb; 39(1):52-61. PubMed ID: 36760049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of Native Plasmids of
    Klein-Gordon JM; Johnson KB; Loper JE; Stockwell VO
    Phytopathology; 2023 Dec; 113(12):2187-2196. PubMed ID: 37287124
    [No Abstract]   [Full Text] [Related]  

  • 31. Biological Control Agents for Fire Blight of Apple Compared Under Conditions Limiting Natural Dispersal.
    Pusey PL
    Plant Dis; 2002 Jun; 86(6):639-644. PubMed ID: 30823238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against
    Sabri M; El Handi K; Valentini F; De Stradis A; Achbani EH; Benkirane R; Resch G; Elbeaino T
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36366553
    [No Abstract]   [Full Text] [Related]  

  • 33. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides.
    Chen M; Wang J; Liu B; Zhu Y; Xiao R; Yang W; Ge C; Chen Z
    BMC Microbiol; 2020 Jun; 20(1):160. PubMed ID: 32539679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates.
    Choi JH; Kim JY; Park DH
    Plant Pathol J; 2022 Aug; 38(4):355-365. PubMed ID: 35953055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crab apple blossoms as a model for research on biological control of fire blight.
    Pusey PL
    Phytopathology; 1997 Nov; 87(11):1096-102. PubMed ID: 18945005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erwinia amylovora Auxotrophic Mutant Exometabolomics and Virulence on Apples.
    Klee SM; Sinn JP; Finley M; Allman EL; Smith PB; Aimufua O; Sitther V; Lehman BL; Krawczyk T; Peter KA; McNellis TW
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae.
    Jakovljevic V; Jock S; Du Z; Geider K
    Microb Biotechnol; 2008 Sep; 1(5):416-24. PubMed ID: 21261861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora.
    Holtappels M; Vrancken K; Noben JP; Remans T; Schoofs H; Deckers T; Valcke R
    J Proteomics; 2016 Apr; 139():1-12. PubMed ID: 26924300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen
    Patel RR; Sundin GW; Yang CH; Wang J; Huntley RB; Yuan X; Zeng Q
    Front Microbiol; 2017; 8():687. PubMed ID: 28469617
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.