These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38792832)

  • 41. Genomic Characterization of Clinical
    Zhang X; Liu Y; Zhang P; Niu Y; Chen Q; Ma X
    Front Microbiol; 2021; 12():751003. PubMed ID: 34956116
    [No Abstract]   [Full Text] [Related]  

  • 42. Molecular Characterization of Klebsiella pneumoniae Clinical Isolates Through Whole-Genome Sequencing: A Comprehensive Analysis of Serotypes, Sequence Types, and Antimicrobial and Virulence Genes.
    Moses VK; Kandi V; Bharadwaj VG; Suvvari TK; Podaralla E
    Cureus; 2024 Apr; 16(4):e58449. PubMed ID: 38765395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020.
    Shen J; Zhang G; Yang J; Zhao L; Jiang Y; Guo D; Wang X; Zhi S; Xu X; Dong Q; Wang X
    Int J Food Microbiol; 2022 Dec; 382():109916. PubMed ID: 36126498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Slaughterhouse as Hotspot of CC1 and CC6
    Guidi F; Centorotola G; Chiaverini A; Iannetti L; Schirone M; Visciano P; Cornacchia A; Scattolini S; Pomilio F; D'Alterio N; Torresi M
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375045
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deciphering the virulence potential of Listeria monocytogenes in the Norwegian meat and salmon processing industry by combining whole genome sequencing and in vitro data.
    Wagner E; Fagerlund A; Thalguter S; Jensen MR; Heir E; Møretrø T; Moen B; Langsrud S; Rychli K
    Int J Food Microbiol; 2022 Dec; 383():109962. PubMed ID: 36240603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterogeneity, Characteristics, and Public Health Implications of
    Chen Y; Chen M; Wang J; Wu Q; Cheng J; Zhang J; Sun Q; Xue L; Zeng H; Lei T; Pang R; Ye Q; Wu S; Zhang S; Wu H; Li W; Kou X
    Front Microbiol; 2020; 11():642. PubMed ID: 32351479
    [No Abstract]   [Full Text] [Related]  

  • 47. [Molecular epidemiology of Listeria monocytogenes isolated from ready-to-eat food in 2017 in China].
    Li WW; Guo YC; Zhan L; Ma GZ; Yang ZS; Liu CW; Shen ZX; Wang D; Zhang XA; Song XH; Yu B; Jia HY; Li XG; Zhang XL; Yang XR; Yang DJ; Pei XY
    Zhonghua Yu Fang Yi Xue Za Zhi; 2020 Feb; 54(2):175-180. PubMed ID: 32074706
    [No Abstract]   [Full Text] [Related]  

  • 48. Geographical and longitudinal analysis of Listeria monocytogenes genetic diversity reveals its correlation with virulence and unique evolution.
    Yin Y; Tan W; Wang G; Kong S; Zhou X; Zhao D; Jia Y; Pan Z; Jiao X
    Microbiol Res; 2015 Jun; 175():84-92. PubMed ID: 25912377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whole-genome sequencing reveals genomic characterization of
    Ji S; Song Z; Luo L; Wang Y; Li L; Mao P; Ye C; Wang Y
    Front Microbiol; 2022; 13():1049843. PubMed ID: 36726565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages.
    Harrand AS; Jagadeesan B; Baert L; Wiedmann M; Orsi RH
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative Genomics of Listeria monocytogenes Isolates from Ruminant Listeriosis Cases in the Midwest United States.
    Cardenas-Alvarez MX; Zeng H; Webb BT; Mani R; Muñoz M; Bergholz TM
    Microbiol Spectr; 2022 Dec; 10(6):e0157922. PubMed ID: 36314928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biocide-Tolerant Listeria monocytogenes Isolates from German Food Production Plants Do Not Show Cross-Resistance to Clinically Relevant Antibiotics.
    Roedel A; Dieckmann R; Brendebach H; Hammerl JA; Kleta S; Noll M; Al Dahouk S; Vincze S
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe.
    Félix B; Capitaine K; Te S; Felten A; Gillot G; Feurer C; van den Bosch T; Torresi M; Sréterné Lancz Z; Delannoy S; Brauge T; Midelet G; Leblanc JC; Roussel S
    Microbiol Spectr; 2023 Jun; 11(3):e0395422. PubMed ID: 37158749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting Listeria monocytogenes virulence potential using whole genome sequencing and machine learning.
    Gmeiner A; Njage PMK; Hansen LT; Aarestrup FM; Leekitcharoenphon P
    Int J Food Microbiol; 2024 Jan; 410():110491. PubMed ID: 38000216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic Diversity and Potential Virulence of
    Pyz-Łukasik R; Paszkiewicz W; Kiełbus M; Ziomek M; Gondek M; Domaradzki P; Michalak K; Pietras-Ożga D
    Foods; 2022 Sep; 11(18):. PubMed ID: 36140933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Source tracking on a dairy farm reveals a high occurrence of subclinical mastitis due to hypervirulent Listeria monocytogenes clonal complexes.
    Papić B; Golob M; Kušar D; Pate M; Zdovc I
    J Appl Microbiol; 2019 Nov; 127(5):1349-1361. PubMed ID: 31432571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole-Genome Sequencing Analysis of Listeria monocytogenes from Rural, Urban, and Farm Environments in Norway: Genetic Diversity, Persistence, and Relation to Clinical and Food Isolates.
    Fagerlund A; Idland L; Heir E; Møretrø T; Aspholm M; Lindbäck T; Langsrud S
    Appl Environ Microbiol; 2022 Mar; 88(6):e0213621. PubMed ID: 35108102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Large-Scale Sequencing-Based Survey of Plasmids in
    Schmitz-Esser S; Anast JM; Cortes BW
    Front Microbiol; 2021; 12():653155. PubMed ID: 33776982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterisation and epidemiological subtyping of Shiga toxin-producing Escherichia coli isolated from the beef production chain in Gauteng, South Africa.
    Onyeka LO; Adesiyun AA; Keddy KH; Hassim A; Smith AM; Thompson PN
    Prev Vet Med; 2022 Aug; 205():105681. PubMed ID: 35691135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prevalence, Potential Virulence, and Genetic Diversity of
    Chen M; Cheng J; Wu Q; Zhang J; Chen Y; Zeng H; Ye Q; Wu S; Cai S; Wang J; Ding Y
    Front Microbiol; 2018; 9():1711. PubMed ID: 30100901
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.