BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 38792857)

  • 1. Exploring the Frozen Armory: Antiphage Defense Systems in Cold-Adapted Bacteria with a Focus on CRISPR-Cas Systems.
    Sandsdalen GD; Kumar A; Hjerde E
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of
    Burke KA; Urick CD; Mzhavia N; Nikolich MP; Filippov AA
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic discovery of antiphage defense systems in the microbial pangenome.
    Doron S; Melamed S; Ofir G; Leavitt A; Lopatina A; Keren M; Amitai G; Sorek R
    Science; 2018 Mar; 359(6379):. PubMed ID: 29371424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immune system of prokaryotes: potential applications and implications for gene editing.
    Liu S; Liu H; Wang X; Shi L
    Biotechnol J; 2024 Feb; 19(2):e2300352. PubMed ID: 38403433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Analysis of Antiphage Defense Mechanisms: Serovar-Specific Patterns.
    Petakh P; Oksenych V; Khovpey Y; Kamyshnyi O
    Antibiotics (Basel); 2024 Jun; 13(6):. PubMed ID: 38927188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viral diversity threshold for adaptive immunity in prokaryotes.
    Weinberger AD; Wolf YI; Lobkovsky AE; Gilmore MS; Koonin EV
    mBio; 2012 Dec; 3(6):e00456-12. PubMed ID: 23221803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation.
    Maikova A; Boudry P; Shiriaeva A; Vasileva A; Boutserin A; Medvedeva S; Semenova E; Severinov K; Soutourina O
    mBio; 2021 Aug; 12(4):e0213621. PubMed ID: 34425703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems.
    Martínez M; Rizzuto I; Molina R
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in
    Castillo JA; Secaira-Morocho H; Maldonado S; Sarmiento KN
    Front Microbiol; 2020; 11():961. PubMed ID: 32508782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and applications of Type I CRISPR-Cas systems.
    Hidalgo-Cantabrana C; Barrangou R
    Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium.
    Briner AE; Lugli GA; Milani C; Duranti S; Turroni F; Gueimonde M; Margolles A; van Sinderen D; Ventura M; Barrangou R
    PLoS One; 2015; 10(7):e0133661. PubMed ID: 26230606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea.
    Tang Z; Chen S; Chen A; He B; Zhou Y; Chai G; Guo F; Huang J
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31411686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering.
    Zheng Y; Li J; Wang B; Han J; Hao Y; Wang S; Ma X; Yang S; Ma L; Yi L; Peng W
    Front Bioeng Biotechnol; 2020; 8():62. PubMed ID: 32195227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPRCasTyper: Automated Identification, Annotation, and Classification of CRISPR-Cas Loci.
    Russel J; Pinilla-Redondo R; Mayo-Muñoz D; Shah SA; Sørensen SJ
    CRISPR J; 2020 Dec; 3(6):462-469. PubMed ID: 33275853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.
    Huang WP; Du YJ; Yang Y; He JN; Lei Q; Yang XY; Zhang KQ; Niu XM
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769197
    [No Abstract]   [Full Text] [Related]  

  • 19. Harnessing the type I CRISPR-Cas systems for genome editing in prokaryotes.
    Xu Z; Li Y; Li M; Xiang H; Yan A
    Environ Microbiol; 2021 Feb; 23(2):542-558. PubMed ID: 32510745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation.
    Liu TY; Doudna JA
    J Biol Chem; 2020 Oct; 295(42):14473-14487. PubMed ID: 32817336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.