These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38793214)

  • 1. Design and Analysis of 5-DOF Compact Electromagnetic Levitation Actuator for Lens Control of Laser Cutting Machine.
    Zhao C; Zhang Q; Pei W; Jin J; Sun F; Zhang H; Zhou R; Liu D; Xu F; Zhang X; Yang L
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform.
    Yang F; Zhao Y; Mu X; Zhang W; Jiang L; Yue H; Liu R
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Locomotion Study of Two-DOF Actuator Driven by Piezoelectric-Electromagnetic Hybrid Mode.
    Li Z; Su Z; Wang H; Du S; Sun H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Analysis of a 2-DOF Electromagnetic Actuator with an Improved Halbach Array for the Magnetic Suspension Platform.
    Yang F; Zhao Y; Li H; Mu X; Zhang W; Yue H; Liu R
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Study on the Control Method of 6-DOF Magnetic Levitation System Using Non-Contact Position Sensors.
    Jung DH; Lim JS
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
    Ghosh A; Rakesh Krishnan T; Tejaswy P; Mandal A; Pradhan JK; Ranasingh S
    ISA Trans; 2014 Jul; 53(4):1216-22. PubMed ID: 24947430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Novel 2-DOF Rotary-Linear Piezoelectric Actuator Operating under Hybrid Bending-Radial Vibration Mode.
    Čeponis A; Mažeika D; Makutėnienė D
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Control of a Two-Degree-of-Freedom Linear Resonant Actuator without a Mechanical Spring.
    Kim G; Hirata K
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dynamic Hysteresis Model and Nonlinear Control System for a Structure-Integrated Piezoelectric Sensor-Actuator.
    Shan X; Song H; Cao H; Zhang L; Zhao X; Fan J
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic piezoelectric hybrid driven multi-DOF motor contact model considering drive and load state.
    Li Z; Zhao L; Guo P; Wang Z
    Sci Prog; 2021; 104(1):368504211002356. PubMed ID: 33733918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.
    Choi YM; Lee MG; Gweon DG; Jeong J
    Rev Sci Instrum; 2009 Apr; 80(4):045106. PubMed ID: 19405690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Analysis of Electromagnetic-Piezoelectric Hybrid Driven Three-Degree-of-Freedom Motor.
    Li Z; Guo P; Wang Z; Zhao L; Wang Q
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a dual-coil type electromagnetic actuator for implantable bone conduction hearing devices.
    Shin DH; Seong KW; Jung ES; Cho JH; Lee KY
    Technol Health Care; 2019; 27(S1):445-454. PubMed ID: 31045559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a three-degree-of-freedom piezoelectric actuator.
    Wei F; Wang X; Dong J; Guo K; Sui Y
    Rev Sci Instrum; 2023 Feb; 94(2):025001. PubMed ID: 36859020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on two-dimensional external magnetic drive method of maglev ball based on force imbalance.
    Liu G; Lu Y; Liu Y; Dong Z; Ye Z
    Rev Sci Instrum; 2020 Oct; 91(10):105003. PubMed ID: 33138616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving high speed of the stick-slip piezoelectric actuator at low frequency by using a two-stage amplification mechanism (TSAM).
    Yi C; Xu Z; Zhao W; Huang Y; Li Y; Huang H
    Rev Sci Instrum; 2022 Jan; 93(1):015010. PubMed ID: 35104969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on one-dimensional motion control system and method of a magnetic levitation ball.
    Zhang C; Lu Y; Liu G; Ye Z
    Rev Sci Instrum; 2019 Nov; 90(11):115005. PubMed ID: 31779450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme.
    Jeong Y; Jayanth GR; Menq CH
    Rev Sci Instrum; 2007 Sep; 78(9):093706. PubMed ID: 17902954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simulation Model for the Inductor of Electromagnetic Levitation Melting and Its Validation.
    Nycz B; Przyłucki R; Maliński Ł; Golak S
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Particle Manipulation in a Metal Internal Channel under Acoustic Levitation.
    Wang Y; Wu L; Wang Y
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.