These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38793223)
1. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Murakami T; Yada N; Yoshida S Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793223 [TBL] [Abstract][Full Text] [Related]
2. Optimization of makerspace microfabrication techniques and materials for the realization of planar, 3D printed microelectrode arrays in under four days. Kundu A; Nattoo C; Fremgen S; Springer S; Ausaf T; Rajaraman S RSC Adv; 2019 Mar; 9(16):8949-8963. PubMed ID: 35517709 [TBL] [Abstract][Full Text] [Related]
9. The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. Parker RA; Negi S; Davis T; Keefer EW; Wiggins H; House PA; Greger B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():791-4. PubMed ID: 23366011 [TBL] [Abstract][Full Text] [Related]
10. Flexible silk-fibroin-based microelectrode arrays for high-resolution neural recording. Ding J; Zeng M; Tian Y; Chen Z; Qiao Z; Xiao Z; Wu C; Wei D; Sun J; Fan H Mater Horiz; 2024 Sep; 11(18):4338-4347. PubMed ID: 38919990 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip. Kundu A; McCoy L; Azim N; Nguyen H; Didier CM; Ausaf T; Sharma AD; Curley JL; Moore MJ; Rajaraman S ACS Biomater Sci Eng; 2021 Jul; 7(7):3018-3029. PubMed ID: 34275292 [TBL] [Abstract][Full Text] [Related]
13. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. Heim M; Yvert B; Kuhn A J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264 [TBL] [Abstract][Full Text] [Related]
14. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording. Kim JM; Im C; Lee WR Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Planar Microelectrode Array Using Laser-Patterned ITO and SU-8. Jeong HS; Hwang S; Min KS; Jun SB Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832760 [TBL] [Abstract][Full Text] [Related]
16. Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces. Ghane Motlagh B; Choueib M; Hajhosseini Mesgar A; Hasanuzzaman M; Sawan M Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404335 [TBL] [Abstract][Full Text] [Related]
17. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling. Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical characteristics of microelectrode designed for electrical stimulation. Cui H; Xie X; Xu S; Chan LLH; Hu Y Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902 [TBL] [Abstract][Full Text] [Related]
19. PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording. Guo L; Deweerth SP Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1623-6. PubMed ID: 19964009 [TBL] [Abstract][Full Text] [Related]
20. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings. Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]