BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38793225)

  • 1. Synthesis of Submicron CaCO
    Reznik I; Kolesova E; Pestereva A; Baranov K; Osin Y; Bogdanov K; Swart J; Moshkalev S; Orlova A
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Vaterite Synthesis: Approaching the Nanoscale Particles.
    Reznik I; Baranov MA; Cherevkov SA; Konarev PV; Volkov VV; Moshkalev S; Trushina DB
    Nanomaterials (Basel); 2023 Dec; 13(23):. PubMed ID: 38063771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.
    Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J
    Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels.
    Cai S; Shi H; Li G; Xue Q; Zhao L; Wang F; Hu B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines.
    Kara A; Vassiliadou A; Ongoren B; Keeble W; Hing R; Lalatsa A; Serrano DR
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Preparation of Semiconducting Polymer Nanoparticles with Varied Sizes for Online Fluorescence Sensing via a Laser-Tailored 3D Microfluidic Chip.
    Hu R; Li X; Xu J; Cheng Y; Zhang M; Shi G
    Anal Chem; 2023 Jul; 95(27):10422-10429. PubMed ID: 37382880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaterite submicron particles designed for photodynamic therapy in cells.
    Souza EF; Ambrósio JAR; Pinto BCS; Beltrame M; Sakane KK; Pinto JG; Ferreira-Strixino J; Gonçalves EP; Simioni AR
    Photodiagnosis Photodyn Ther; 2020 Sep; 31():101913. PubMed ID: 32645435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production.
    Bottaro E; Mosayyebi A; Carugo D; Nastruzzi C
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.
    Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA
    J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.
    Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis.
    Min KH; Kim DH; Pack SP
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-open-tubular column enabling transverse diffusion. Part 3: Simulation of solute dispersion along a real three dimensional-printed column with quadratic channels.
    Gritti F; Hlushkou D; Tallarek U
    J Chromatogr A; 2023 Mar; 1693():463860. PubMed ID: 36822037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design.
    Borro BC; Bohr A; Bucciarelli S; Boetker JP; Foged C; Rantanen J; Malmsten M
    J Colloid Interface Sci; 2019 Mar; 538():559-568. PubMed ID: 30551068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Manufacturing of Cocrystals Using 3D-Printed Microfluidic Chips Coupled with Spray Coating.
    Kara A; Kumar D; Healy AM; Lalatsa A; Serrano DR
    Pharmaceuticals (Basel); 2023 Jul; 16(8):. PubMed ID: 37630979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Porous CaCO
    Febrida R; Cahyanto A; Herda E; Muthukanan V; Djustiana N; Faizal F; Panatarani C; Joni IM
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An emulsion-based droplet hydrothermal synthesis method for the production of uniform sized zeolite nanocrystals.
    Sharma P; Han MH; Cho CH
    J Colloid Interface Sci; 2014 May; 422():45-53. PubMed ID: 24655827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments.
    Nouri-Goushki M; Sharma A; Sasso L; Zhang S; Van der Eerden BCJ; Staufer U; Fratila-Apachitei LE; Zadpoor AA
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6127-6136. PubMed ID: 33405666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.