BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38793225)

  • 21. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties.
    Ermakov AV; Chapek SV; Lengert EV; Konarev PV; Volkov VV; Artemov VV; Soldatov MA; Trushina DB
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers.
    Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M
    PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Step Synthesis of Ultrasmall Nanoparticles in Glycerol as a Promising Green Solvent at Room Temperature Using Omega-Shaped Microfluidic Micromixers.
    Jahangir R; Munir I; Yesiloz G
    Anal Chem; 2023 Nov; 95(47):17177-17186. PubMed ID: 37956303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic Synthesis and Analysis of Bioinspired Structures Based on CaCO
    Lengert EV; Trushina DB; Soldatov M; Ermakov AV
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier.
    Ozeki T; Beppu S; Mizoe T; Takashima Y; Yuasa H; Okada H
    Pharm Res; 2006 Jan; 23(1):177-83. PubMed ID: 16267631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monodisperse and Nanometric-Sized Calcium Carbonate Particles Synthesis Optimization.
    Persano F; Nobile C; Piccirillo C; Gigli G; Leporatti S
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CaCO
    Zárybnická L; Ševčík R; Pokorný J; Machová D; Stránská E; Šál J
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic synthesis of calcium carbonate under phenylalanine: Control of polymorph and morphology.
    Yang T; Fu J; Ma L; Du H; Yue X; Zhao B; Wang C
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111019. PubMed ID: 32994025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sonochemical Synthesis of Vaterite-Type Calcium Carbonate Using Steamed Ammonia Liquid Waste without Additives.
    Luo X; Song X; Lai C; Wang J; Cao Y
    ACS Omega; 2021 Sep; 6(37):23846-23854. PubMed ID: 34568664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform.
    Parakhonskiy BV; Svenskaya YI; Yashchenok AМ; Fattah HA; Inozemtseva OA; Tessarolo F; Antolini R; Gorin DA
    Colloids Surf B Biointerfaces; 2014 Jun; 118():243-8. PubMed ID: 24802965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets.
    Ahn GY; Choi I; Song M; Han SK; Choi K; Ryu YH; Oh DH; Kang HW; Choi SW
    ACS Macro Lett; 2022 Jan; 11(1):127-134. PubMed ID: 35574793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-speed discrimination and sorting of submicron particles using a microfluidic device.
    Rajauria S; Axline C; Gottstein C; Cleland AN
    Nano Lett; 2015 Jan; 15(1):469-75. PubMed ID: 25442878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-controlled vaterite composite particles with a POSS-core dendrimer for the fabrication of calcite thin films by phase transition.
    Nakamura S; Naka K
    Langmuir; 2013 Dec; 29(51):15888-97. PubMed ID: 24328328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation.
    Shan H; Lin Q; Wang D; Sun X; Quan B; Chen X; Chen Z
    Front Bioeng Biotechnol; 2021; 9():773705. PubMed ID: 34708031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.