These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38793253)

  • 1. Energy-Based Unified Models for Predicting the Fatigue Life Behaviors of Austenitic Steels and Welded Joints in Ultra-Supercritical Power Plants.
    Hwang JH; Kim DW; Lim JY; Hong SG
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of PWHT Parameters on the Mechanical Properties and Microstructural Behavior of Multi-Pass GTAW Joints of P92 Steel.
    Sirohi S; Kumar A; Soni S; Dak G; Kumar S; Świerczyńska A; Rogalski G; Fydrych D; Pandey C
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Energy-Based Method for Lifetime Assessment on High-Strength-Steel Welded Joints under Different Pre-Strain Levels.
    Mi C; Huang Z; Wang H; Zhang D; Xiong T; Jian H; Tang J; Yu J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of V-N Microalloying on Low-Cycle Fatigue Property in the Welded Joints of Constructional Steel.
    Cui K; Yang H; Li Z; Wang G; Zhao H; Li Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Energy-Based Unified Approach to Predict the Low-Cycle Fatigue Life of Type 316L Stainless Steel under Various Temperatures and Strain-Rates.
    Tak NH; Kim JS; Lim JY
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation Damage Evolution in Low-Cycle Fatigue Life of Niobium-Stabilized Austenitic Stainless Steel.
    Choi WK; Ha S; Kim JC; Park JC; Gong A; Kim TW
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural and Performance Analysis of TP304H/T22 Dissimilar Steel Welded Joints.
    Sun J; Wang T; Liu F; Zhang Z; Chen Y; Lin H; Liu H; Zhao X; Cheng X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details.
    Huang L; Qu W; Zhao E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Life Assessment of Welded Joints by Combined Measurements Using DIC and XRD.
    Wang Y; Ueda K; Nagao R; Tsutsumi S
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability modeling of the fatigue life of lead-free solder joints at different testing temperatures and load levels using the Arrhenius model.
    Bani Hani D; Al Athamneh R; Abueed M; Hamasha S
    Sci Rep; 2023 Feb; 13(1):2493. PubMed ID: 36781927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autogenous Fiber Laser Welding of 316L Austenitic and 2304 Lean Duplex Stainless Steels.
    Landowski M; Świerczyńska A; Rogalski G; Fydrych D
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Entropy-Based Neighborhood Rough Set and PSO-SVRM Model for Fatigue Life Prediction of Titanium Alloy Welded Joints.
    Zou L; Sun Y; Yang X
    Entropy (Basel); 2019 Jan; 21(2):. PubMed ID: 33266833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.
    Su C; Zhou J; Meng X; Huang S
    Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Repair Welding on the Fatigue Behavior of S355J2 T-Joints.
    Zhao P; Yu B; Wang P; Liu Y; Song X
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cycle Fatigue Behavior of the Novel Steel and 30SiMn2MoV Steel at 700 °C.
    Zhao C; Zhang J; Fu J; Lian Y; Zhang Z; Zhang C; Huang J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue life of underwater wet welded low carbon steel SS400.
    Muhayat N; Matien YA; Sukanto H; Saputro YCN; Triyono
    Heliyon; 2020 Feb; 6(2):e03366. PubMed ID: 32072056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.