These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 38793298)

  • 21. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement.
    Lisuzzo L; Cavallaro G; Pasbakhsh P; Milioto S; Lazzara G
    J Colloid Interface Sci; 2019 Jul; 547():361-369. PubMed ID: 30974251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations.
    Panchal A; Fakhrullina G; Fakhrullin R; Lvov Y
    Nanoscale; 2018 Oct; 10(38):18205-18216. PubMed ID: 30211430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electrophoretic mobility of montmorillonite. Zeta potential and surface conductivity effects.
    Leroy P; Tournassat C; Bernard O; Devau N; Azaroual M
    J Colloid Interface Sci; 2015 Aug; 451():21-39. PubMed ID: 25875489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium montmorillonite clay reduces AFB1 and FB1 biomarkers in rats exposed to single and co-exposures of aflatoxin and fumonisin.
    Mitchell NJ; Xue KS; Lin S; Marroquin-Cardona A; Brown KA; Elmore SE; Tang L; Romoser A; Gelderblom WC; Wang JS; Phillips TD
    J Appl Toxicol; 2014 Jul; 34(7):795-804. PubMed ID: 24193864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Halloysite clay nanotubes for controlled release of protective agents.
    Abdullayev E; Lvov Y
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10007-26. PubMed ID: 22413340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers.
    Zadaka D; Radian A; Mishael YG
    J Colloid Interface Sci; 2010 Dec; 352(1):171-7. PubMed ID: 20832080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N(2)-BET specific surface area of bentonites.
    Kaufhold S; Dohrmann R; Klinkenberg M; Siegesmund S; Ufer K
    J Colloid Interface Sci; 2010 Sep; 349(1):275-82. PubMed ID: 20570273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study.
    Rinnert E; Carteret C; Humbert B; Fragneto-Cusani G; Ramsay JD; Delville A; Robert JL; Bihannic I; Pelletier M; Michot LJ
    J Phys Chem B; 2005 Dec; 109(49):23745-59. PubMed ID: 16375356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of cationic polyacrylamide onto sepiolite.
    Tekin N; Dinçer A; Demirbaş O; Alkan M
    J Hazard Mater; 2006 Jun; 134(1-3):211-9. PubMed ID: 16343759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals.
    Samuels M; Mor O; Rytwo G
    J Photochem Photobiol B; 2013 Apr; 121():23-6. PubMed ID: 23474529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibrous Clays in Dermopharmaceutical and Cosmetic Applications: Traditional and Emerging Perspectives.
    Cao L; Xie W; Cui H; Xiong Z; Tang Y; Zhang X; Feng Y
    Int J Pharm; 2022 Sep; 625():122097. PubMed ID: 35952800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review.
    Fan WK; Tahir M
    Sci Total Environ; 2022 Nov; 845():157206. PubMed ID: 35810906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives.
    Mukhopadhyay R; Sarkar B; Palansooriya KN; Dar JY; Bolan NS; Parikh SJ; Sonne C; Ok YS
    Adv Colloid Interface Sci; 2021 Nov; 297():102537. PubMed ID: 34624725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review.
    Hacıosmanoğlu GG; Mejías C; Martín J; Santos JL; Aparicio I; Alonso E
    J Environ Manage; 2022 Sep; 317():115397. PubMed ID: 35660825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicological evaluation of clay minerals and derived nanocomposites: a review.
    Maisanaba S; Pichardo S; Puerto M; Gutiérrez-Praena D; Cameán AM; Jos A
    Environ Res; 2015 Apr; 138():233-54. PubMed ID: 25732897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review.
    Barakan S; Aghazadeh V
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2572-2599. PubMed ID: 33113058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of nucleic Acid bases, ribose, and phosphate by some clay minerals.
    Hashizume H
    Life (Basel); 2015 Feb; 5(1):637-50. PubMed ID: 25734235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials.
    Lo Dico G; Lisuzzo L; Carcelén V; Cavallaro G; Haranczyk M
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]     [New Search]
    of 2.