These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38793305)

  • 21. Microstructure and Electrochemical Behavior of a 3D-Printed Ti-6Al-4V Alloy.
    Yu Z; Chen Z; Qu D; Qu S; Wang H; Zhao F; Zhang C; Feng A; Chen D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Novel Low-Cost Ti-3Al-5Mo-4Cr-2Zr-1Fe Alloy.
    Sun M; Li D; Guo Y; Wang Y; Dong Y; Dan Z; Chang H
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-property relationship of cast Ti-Nb alloys.
    Lee CM; Ju CP; Chern Lin JH
    J Oral Rehabil; 2002 Apr; 29(4):314-22. PubMed ID: 11966963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deformation Behavior and Tensile Properties of the Semi-Equiaxed Microstructure in Near Alpha Titanium Alloy.
    Luo M; Lin T; Zhou L; Li W; Liang Y; Han M; Liang Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Aging Temperature on the Microstructure and Mechanical Properties of a Novel β Titanium Alloy.
    Xiang W; Yuan W; Deng H; Luo H; Chen L; Yin W
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Microstructural Difference and Its Influence on the Ballistic Impact Behavior of a Near β-Type Ti5.1Al2.5Cr0.5Fe4.5Mo1.1Sn1.8Zr2.9Zn Titanium Alloy.
    Zhu X; Fan Q; Wang D; Gong H; Yu H; Yuan J
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32927684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM).
    Carrozza A; Marchese G; Saboori A; Bassini E; Aversa A; Bondioli F; Ugues D; Biamino S; Fino P
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications.
    Ijaz MF; Alharbi HF; Bahri YA; Sherif EM
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of post-sintering heat treatments on the tensile properties of Ti-6A1-4V alloy.
    Cook SD; Anderson RC; Thongpreda N; Haddad RJ
    Biomater Med Devices Artif Organs; 1986; 14(3-4):167-80. PubMed ID: 3814712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Laser Shock Peening on Microstructure and Properties of Ti-6Al-4V Titanium Alloy Fabricated via Selective Laser Melting.
    Lan L; Xin R; Jin X; Gao S; He B; Rong Y; Min N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of heat treatment processes on microstructure evolution, tensile and tribological properties of Ti6Al4V alloy.
    Elshaer RN; El-Hadad S; Nofal A
    Sci Rep; 2023 Jul; 13(1):11292. PubMed ID: 37438441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical Properties of TC11 Titanium Alloy and Graphene Nanoplatelets/TC11 Composites Prepared by Selective Laser Melting.
    Ou B; Lu L; Wang Q; He Q; Xie Y; Yan J
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructure, Tensile, and Creep Behaviors of Ti-22Al-25Nb (at.%) Orthorhombic Alloy with Equiaxed Microstructure.
    Wang W; Zeng W; Sun Y; Zhou H; Liang X
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Heat Treatment on Microstructure and Mechanical Properties of Weldable Al-Mg-Zn-Sc Alloy with High Strength and Ductility.
    Jiang L; Zhang Z; Bai Y; Mao W
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of Low-Cost Ti-35421 Titanium Alloy: Phase Transformation, Bimodal Microstructure, and Combinatorial Mechanical Properties.
    Chen F; Xu G; Cui Y; Chang H
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a new β Ti alloy with low modulus and favorable plasticity for implant material.
    Liang SX; Feng XJ; Yin LX; Liu XY; Ma MZ; Liu RP
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():338-43. PubMed ID: 26838858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy.
    Acharya S; Bahl S; Dabas SS; Hassan S; Gopal V; Panicker AG; Manivasagam G; Suwas S; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109755. PubMed ID: 31349485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion.
    Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strengthening of a Near β-Ti Alloy through β Grain Refinement and Stress-Induced α Precipitation.
    Chen W; Li C; Feng K; Lin Y; Zhang X; Chen C; Zhou K
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys.
    Majumdar P
    Micron; 2012 Aug; 43(8):876-86. PubMed ID: 22459252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.