These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38793337)

  • 1. Additively Manufactured Bionic Corrugated Lightweight Honeycomb Structures with Controlled Deformation Load-Bearing Properties.
    Li J; Wang H; Kong X; Jiao Z; Yang W
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Properties of a Honeycomb Structure Dispersed with 3D-Printed Fe
    Song X; Hong S; Wang J; Zhu X; Guo S; Fu Y; Yang Y; Yang M; He W; Tang Y; Gao B
    ACS Omega; 2024 Mar; 9(12):14287-14296. PubMed ID: 38559934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Lattice Mechanical Properties for Lightweight Heat-Resistant Load-Bearing Structure Design.
    Wang X; Wang C; Zhou X; Wang D; Zhang M; Gao Y; Wang L; Zhang P
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33120911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Performance of Lightweight-Designed Honeycomb Structures Fabricated Using Multijet Fusion Additive Manufacturing Technology.
    Nazir A; Arshad AB; Lin SC; Jeng JY
    3D Print Addit Manuf; 2022 Aug; 9(4):311-325. PubMed ID: 36660228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive Properties of Functionally Graded Bionic Bamboo Lattice Structures Fabricated by FDM.
    Wen Z; Li M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Performance Evaluation of Bionic Thin-Walled Structures with Different Cross Sections considering Complex Conditions.
    Zhang H; Huang Z; Li T; Bao C; Zhang L
    J Environ Public Health; 2022; 2022():2220633. PubMed ID: 36213039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on lightweight laminate for car body with excellent cushioning and energy absorption characteristics.
    Jiang M; Shijie-Liu ; Xiao JM
    Heliyon; 2022 Nov; 8(11):e11280. PubMed ID: 36387491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Study of a Honeycomb Energy Absorption Structure Based on Straw Micro-Porous Structure.
    Xu S; Chen N; Qin H; Zou M; Song J
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38275457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Performances of Lightweight Sandwich Structures Produced by Material Extrusion-Based Additive Manufacturing.
    Zaharia SM; Enescu LA; Pop MA
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32759825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additively manufactured biomorphic cellular structures inspired by wood microstructure.
    Ufodike CO; Ahmed MF; Dolzyk G
    J Mech Behav Biomed Mater; 2021 Nov; 123():104729. PubMed ID: 34450417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on In-Plane Deformation Performance of Rotating Honeycomb Structures.
    Zhang Y; Ma Y; Guo X; Wang Q
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite Element Modeling for the Simulation of the Quasi-Static Compression of Corrugated Tapered Tubes.
    Xiang X; Shao D; Zhang X; Zhang S; Liu Y
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36688557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties.
    Harish A; Alsaleh NA; Ahmadein M; Elfar AA; Djuansjah J; Hassanin H; El-Sayed MA; Essa K
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Impact Mechanical Properties of Reentrant Bionic Automotive Energy Absorbing Box.
    Liu ZX; Liu WD
    Appl Bionics Biomech; 2023; 2023():7283835. PubMed ID: 36644768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.
    Shon S; Yoo M; Lee S
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctionality of Additively Manufactured Kelvin Foam for Electromagnetic Wave Absorption and Load Bearing.
    Lee J; Lim DD; Park J; Lee J; Noh D; Gu GX; Choi W
    Small; 2023 Dec; 19(50):e2305005. PubMed ID: 37688312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior Mechanical Properties of Invar36 Alloy Lattices Structures Manufactured by Laser Powder Bed Fusion.
    He G; Peng X; Zhou H; Huang G; Xie Y; He Y; Liu H; Huang K
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Ultra-Wideband Electromagnetic-Wave-Absorbing Metastructure Inspired by Bionic Gyroid Structures.
    An Q; Li D; Liao W; Liu T; Joralmon D; Li X; Zhao J
    Adv Mater; 2023 Jun; 35(26):e2300659. PubMed ID: 36942913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets.
    Cui Z; Qi J; Duan Y; Tie Y; Zheng Y; Yang J; Li C
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.