These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38793400)

  • 1. Achievement of a Parameter Window for the Selective Laser Melting Formation of a GH3625 Alloy.
    Quan G; Deng Q; Zhao Y; Quan M; Wu D
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy.
    Wang JH; Ren J; Liu W; Wu XY; Gao MX; Bai PK
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale.
    Cao L; Yuan X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Analysis and Computational Fluid Dynamics Verification of Molten Pool Characteristics During Selective Laser Melting of Ti-6Al-4V Plates.
    Du L; Jiang WG; Xu GG; Qin QH; Li DS
    3D Print Addit Manuf; 2023 Aug; 10(4):711-722. PubMed ID: 37609587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy.
    Han X; Zhu H; Nie X; Wang G; Zeng X
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29518900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring.
    Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Real-Time Monitoring Method for Selective Laser Melting of TA1 Materials Based on Radiation Detection of a Molten Pool.
    Zhou T; Huang W; Chen C
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat Transfer, Molten Pool Flow Micro-Simulation, and Experimental Research on Molybdenum Alloys Fabricated via Selective Laser Melting.
    Guo Z; Wang L; Wang C; Ding X; Liu J
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33375742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process parameters on microstructures and properties of Al-42Si alloy fabricated by selective laser melting.
    Cai X; Liu T; Yan X; Cheng Z; Pan L; Tian Z; Luo L; Su Y
    Heliyon; 2022 Jun; 8(6):e09680. PubMed ID: 35711975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters.
    Bian P; Wang C; Xu K; Ye F; Zhang Y; Li L
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy.
    Liu S; Guo H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of High-Strength Cu-Cr-Zr Alloy Fabricated by Selective Laser Melting.
    Sun F; Liu P; Chen X; Zhou H; Guan P; Zhu B
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Annular Laser Metal Deposition (ALMD) Process Parameters on Track Geometry and Thermal History on Ti6Al4V Alloy Clad.
    Zhang J; Cao Y; Wang H; Shi T; Su B; Zhang L
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process Parameter Optimization for Laser Powder Bed Fusion of Fe-Si Alloy Considering Surface Morphology and Track Width of Single Scan Track.
    Jang HS; Kim SH; Park GW; Jeon JB; Kim D; Kim D; Kim WR; Choi YS; Shin S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting.
    Bao T; Tan Y; Xu Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.