These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 38793416)

  • 21. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through Dry-Spraying Manufacturing.
    Liu J; Ludwig B; Liu Y; Pan H; Wang Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25081-25089. PubMed ID: 31149798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Printed Electrode and Its Novel Applications in Electronic Devices.
    Foo CY; Lim HN; Mahdi MA; Wahid MH; Huang NM
    Sci Rep; 2018 May; 8(1):7399. PubMed ID: 29743664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture.
    Han X; Yang Z; Zhao B; Zhu S; Zhou L; Dai J; Kim JW; Liu B; Connell JW; Li T; Yang B; Lin Y; Hu L
    ACS Nano; 2017 Mar; 11(3):3189-3197. PubMed ID: 28263560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries.
    Ludwig B; Zheng Z; Shou W; Wang Y; Pan H
    Sci Rep; 2016 Mar; 6():23150. PubMed ID: 26984488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.
    Zhao J; Lu Z; Wang H; Liu W; Lee HW; Yan K; Zhuo D; Lin D; Liu N; Cui Y
    J Am Chem Soc; 2015 Jul; 137(26):8372-5. PubMed ID: 26091423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond.
    Muldoon J; Bucur CB; Gregory T
    Chem Rev; 2014 Dec; 114(23):11683-720. PubMed ID: 25343313
    [No Abstract]   [Full Text] [Related]  

  • 29. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents.
    Zhao J; Lu Z; Liu N; Lee HW; McDowell MT; Cui Y
    Nat Commun; 2014 Oct; 5():5088. PubMed ID: 25277107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.
    Zhang K; Han X; Hu Z; Zhang X; Tao Z; Chen J
    Chem Soc Rev; 2015 Feb; 44(3):699-728. PubMed ID: 25200459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological monitoring and health effects of low-level exposure to N-methyl-2-pyrrolidone: a cross-sectional study.
    Haufroid V; Jaeger VK; Jeggli S; Eisenegger R; Bernard A; Friedli D; Lison D; Hotz P
    Int Arch Occup Environ Health; 2014 Aug; 87(6):663-74. PubMed ID: 24078144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).
    Forney MW; Ganter MJ; Staub JW; Ridgley RD; Landi BJ
    Nano Lett; 2013 Sep; 13(9):4158-63. PubMed ID: 23902472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing of interdigitated Li-ion microbattery architectures.
    Sun K; Wei TS; Ahn BY; Seo JY; Dillon SJ; Lewis JA
    Adv Mater; 2013 Sep; 25(33):4539-43. PubMed ID: 23776158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical energy storage for the grid: a battery of choices.
    Dunn B; Kamath H; Tarascon JM
    Science; 2011 Nov; 334(6058):928-35. PubMed ID: 22096188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benzo[1,2-b:4,5-b']dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells.
    Zhang G; Fu Y; Zhang Q; Xie Z
    Chem Commun (Camb); 2010 Jul; 46(27):4997-9. PubMed ID: 20520865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dry Electrode Processing Technology and Binders.
    Zhang K; Li D; Wang X; Gao J; Shen H; Zhang H; Rong C; Chen Z
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Polytetrafluoroethylene-Based Solvent-Free Procedure for the Manufacturing of Lithium-Ion Batteries.
    Wang X; Chen S; Zhang K; Huang L; Shen H; Chen Z; Rong C; Wang G; Jiang Z
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators.
    Lee S; Koo H; Kang HS; Oh KH; Nam KW
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current and future lithium-ion battery manufacturing.
    Liu Y; Zhang R; Wang J; Wang Y
    iScience; 2021 Apr; 24(4):102332. PubMed ID: 33889825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.