These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38793441)

  • 1. Application of Instrumented Indentation Procedure in Assessing the Low-Cycle Fatigue Properties of Selected Heat-Treated Steels.
    Hościło B; Molski KL
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Surface Stresses in X20Cr13 Steel by the Use of a Modified Hardness Measurement Procedure with Vickers Indenter.
    Hościło B; Molski KL
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse Method to Determine Fatigue Properties of Materials by Combining Cyclic Indentation and Numerical Simulation.
    Sajjad HM; Ul Hassan H; Kuntz M; Schäfer BJ; Sonnweber-Ribic P; Hartmaier A
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability-Based Low Fatigue Life Analysis of Turbine Blisk with Generalized Regression Extreme Neural Network Method.
    Zhang C; Wei J; Jing H; Fei C; Tang W
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Method for Vickers Hardness Estimation by Image Processing.
    Polanco JD; Jacanamejoy-Jamioy C; Mambuscay CL; Piamba JF; Forero MG
    J Imaging; 2022 Dec; 9(1):. PubMed ID: 36662106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Tempering Temperature on Mechanical and Rotational Bending Fatigue Properties of 40CrNi2MoE Steel.
    Yao CD; Li Y; Zang ZW; Li XY; Han S
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Cycle Fatigue Behavior of Plastically Pre-Strained HSLA S355MC and S460MC Steels.
    Prosgolitis CG; Kermanidis AT; Kamoutsi H; Haidemenopoulos GN
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material.
    Bazaras Ž; Lukoševičius V
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Low-Cycle Fatigue Behavior, Failure Mechanism and Prediction of SLM Ti-6Al-4V Alloy with Different Heat Treatment Methods.
    Xi J; Hu Y; Xing H; Han Y; Zhang H; Jiang J; Nikbin K
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indentation Modulus, Indentation Work and Creep of Metals and Alloys at the Macro-Scale Level: Experimental Insights into the Use of a Primary Vickers Hardness Standard Machine.
    Schiavi A; Origlia C; Germak A; Prato A; Genta G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint.
    Torzewski J; Grzelak K; Wachowski M; Kosturek R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue testing of a NiTi rotary instrument. Part 1: Strain-life relationship.
    Cheung GS; Darvell BW
    Int Endod J; 2007 Aug; 40(8):612-8. PubMed ID: 17532775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing and Analysis of Uniaxial Mechanical Fatigue, Charpy Impact Fracture Energy and Microhardness of Two Low-Carbon Steels.
    Brnic J; Balos S; Brcic M; Dramicanin M; Krscanski S; Milutinovic M; Ding B; Gao Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cycle Fatigue Behavior of Wire and Arc Additively Manufactured Ti-6Al-4V Material.
    Springer S; Leitner M; Gruber T; Oberwinkler B; Lasnik M; Grün F
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effect of pre-strain and pre-fatigue on the monotonic behaviour of ultra-high strength steels.
    Cockings HL; Cockings BJ; Perkins KM
    Heliyon; 2020 Jul; 6(7):e04440. PubMed ID: 32695913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Elastic-Plastic Correlation of Low-Cycle Fatigue for Variable Asymmetric Loadings.
    Zhang J; Li W; Dai H; Liu N; Lin J
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LCF and HCF of Short Carbon Fibers Reinforced AE42 Mg Alloy.
    Alsaleh NA; Ataya S; Latief FH; Ahmed MMZ; Ataya A; Abdul-Latif A
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic Deformation Behavior of A Heat-Treated Die-Cast Al-Mg-Si-Based Aluminum Alloy.
    Mohammed S; Gupta S; Li D; Zeng X; Chen D
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading.
    Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.