These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 38793481)

  • 21. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering.
    Yang X; Wang Y; Zhou Y; Chen J; Wan Q
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses.
    Petretta M; Gambardella A; Boi M; Berni M; Cavallo C; Marchiori G; Maltarello MC; Bellucci D; Fini M; Baldini N; Grigolo B; Cannillo V
    Biology (Basel); 2021 May; 10(5):. PubMed ID: 34064398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural Polymeric Scaffolds in Bone Regeneration.
    Filippi M; Born G; Chaaban M; Scherberich A
    Front Bioeng Biotechnol; 2020; 8():474. PubMed ID: 32509754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polycaprolactone as biomaterial for bone scaffolds: Review of literature.
    Dwivedi R; Kumar S; Pandey R; Mahajan A; Nandana D; Katti DS; Mehrotra D
    J Oral Biol Craniofac Res; 2020; 10(1):381-388. PubMed ID: 31754598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Mesenchymal Stem Cell Combined with a New Strontium-Enriched Bioactive Glass: An
    Bellucci D; Veronesi E; Strusi V; Petrachi T; Murgia A; Mastrolia I; Dominici M; Cannillo V
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31694164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA.
    Marchiori G; Berni M; Boi M; Petretta M; Grigolo B; Bellucci D; Cannillo V; Garavelli C; Bianchi M
    Med Eng Phys; 2019 Jul; 69():92-99. PubMed ID: 31101484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications.
    Siddiqui N; Asawa S; Birru B; Baadhe R; Rao S
    Mol Biotechnol; 2018 Jul; 60(7):506-532. PubMed ID: 29761314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current Concepts in Scaffolding for Bone Tissue Engineering.
    Ghassemi T; Shahroodi A; Ebrahimzadeh MH; Mousavian A; Movaffagh J; Moradi A
    Arch Bone Jt Surg; 2018 Mar; 6(2):90-99. PubMed ID: 29600260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness.
    Andrukhov O; Huber R; Shi B; Berner S; Rausch-Fan X; Moritz A; Spencer ND; Schedle A
    Dent Mater; 2016 Nov; 32(11):1374-1384. PubMed ID: 27637551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.
    Florencio-Silva R; Sasso GR; Sasso-Cerri E; Simões MJ; Cerri PS
    Biomed Res Int; 2015; 2015():421746. PubMed ID: 26247020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of substrate stiffness on the osteogenic differentiation of bone marrow stem cells and bone-derived cells.
    Witkowska-Zimny M; Walenko K; Wrobel E; Mrowka P; Mikulska A; Przybylski J
    Cell Biol Int; 2013 Jun; 37(6):608-16. PubMed ID: 23447501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone tissue engineering: recent advances and challenges.
    Amini AR; Laurencin CT; Nukavarapu SP
    Crit Rev Biomed Eng; 2012; 40(5):363-408. PubMed ID: 23339648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA.
    Park SH; Park DS; Shin JW; Kang YG; Kim HK; Yoon TR; Shin JW
    J Mater Sci Mater Med; 2012 Nov; 23(11):2671-8. PubMed ID: 22990617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is bone's response to mechanical signals dominated by gravitational loading?
    Judex S; Carlson KJ
    Med Sci Sports Exerc; 2009 Nov; 41(11):2037-43. PubMed ID: 19812513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The physical characterization of a thermoplastic polymer for endodontic obturation.
    Elzubair A; Elias CN; Suarez JC; Lopes HP; Vieira MV
    J Dent; 2006 Nov; 34(10):784-9. PubMed ID: 16600464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ; Thompson ID; Boccaccini AR
    Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multidisciplinary Evaluation of Three-Dimensional Polycaprolactone Bioactive Glass Scaffolds for Bone Tissue Engineering Purposes.
    Marchiori G; Bellucci D; Gambardella A; Petretta M; Berni M; Boi M; Grigolo B; Giavaresi G; Baldini N; Cannillo V; Cavallo C
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.