These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38793535)

  • 21. Reactive Insertion of PEDOT-PSS in SWCNT@Silica Composites and its Electrochemical Performance.
    Djelad H; Benyoucef A; Morallón E; Montilla F
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
    Yan Y; Santaniello T; Bettini LG; Minnai C; Bellacicca A; Porotti R; Denti I; Faraone G; Merlini M; Lenardi C; Milani P
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28417488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance enhancement of PEDOT:poly(4-styrenesulfonate) actuators by using ethylene glycol.
    Terasawa N; Asaka K
    RSC Adv; 2018 May; 8(32):17732-17738. PubMed ID: 35542075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polypyrrole nanoparticles-based soft actuator for artificial muscle applications.
    Khan A; Alamry KA; Jain RK
    RSC Adv; 2019 Dec; 9(68):39721-39734. PubMed ID: 35541412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetically and Electrically Responsive Soft Actuator Derived from Ferromagnetic Bimetallic Organic Framework.
    Sambyal P; Mahato M; Taseer AK; Yoo H; Garai M; Nguyen VH; Ali SS; Oh IK
    Small; 2023 Jun; 19(23):e2207140. PubMed ID: 36908006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.
    Chen IP; Yang MC; Yang CH; Zhong DX; Hsu MC; Chen Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5550-5555. PubMed ID: 28107622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain-capacitance relationship in polymer actuators based on single-walled carbon nanotubes and ionic liquid gels.
    Randriamahazaka H; Asaka K
    Faraday Discuss; 2017 Jul; 199():405-422. PubMed ID: 28428985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin coated ultrathin PEDOT:PSS/SWCNT film with high electronic conductivity.
    Zhong Y; Li B; Wang Y; Fu S; Deng J; Li G; Zhao H; Chen T
    Nanotechnology; 2024 Apr; 35(29):. PubMed ID: 38569481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
    Chang J; Najeeb CK; Lee JH; Kim JH
    Langmuir; 2011 Jun; 27(11):7330-6. PubMed ID: 21557548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Paper Actuators Based on Carbon-Nanotube-Composite Paper.
    Ampo T; Oya T
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33800351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PEDOT-Based Conducting Polymer Actuators.
    Hu F; Xue Y; Xu J; Lu B
    Front Robot AI; 2019; 6():114. PubMed ID: 33501129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the cooperative nature of the conductive components in polystyrene/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)-single-walled carbon nanotube composites.
    Hermant MC; van der Schoot P; Klumperman B; Koning CE
    ACS Nano; 2010 Apr; 4(4):2242-8. PubMed ID: 20222676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes.
    Kim O; Shin TJ; Park MJ
    Nat Commun; 2013; 4():2208. PubMed ID: 23896756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A PEDOT:PSS/MXene-based actuator with self-powered sensing function by incorporating a photo-thermoelectric generator.
    Qian Y; Zhou P; Wang Y; Zheng Y; Luo Z; Chen L
    RSC Adv; 2023 Oct; 13(46):32722-32733. PubMed ID: 38022765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development, Characterization and Electromechanical Actuation Behavior of Ionic Polymer Metal Composite Actuator based on Sulfonated Poly(1,4-phenylene ether-ether-sulfone)/Carbon Nanotubes.
    Khan A; Jain RK; Banerjee P; Ghosh B; Inamuddin ; Asiri AM
    Sci Rep; 2018 Jul; 8(1):9909. PubMed ID: 29967364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Hexagonal Boron Nitride Insulating Layers on the Driving Performance of Ionic Electroactive Polymer Actuators for Light-Weight Artificial Muscles.
    Park M; Chun Y; Kim S; Sohn KY; Jeon M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Template-Assisted Self-Assembly of Conductive Polymer Electrodes for Ionic Electroactive Polymers.
    Jo A; Huet C; Naguib HE
    Front Bioeng Biotechnol; 2020; 8():837. PubMed ID: 32850715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube and graphene-based bioinspired electrochemical actuators.
    Kong L; Chen W
    Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultralow-Voltage-Drivable Artificial Muscles Based on a 3D Structure MXene-PEDOT:PSS/AgNWs Electrode.
    Liu L; Wang C; Wu Z; Xing Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18150-18158. PubMed ID: 35416640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.