These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38793536)

  • 1. Correction: Bisighini et al. Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin-Dip Coating.
    Bisighini B; Di Giovanni P; Scerrati A; Trovalusci F; Vesco S
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin-Dip Coating.
    Bisighini B; Di Giovanni P; Scerrati A; Trovalusci F; Vesco S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.
    Clement CE; Jiang D; Thio SK; Park SY
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings.
    Hosseinzadeh E; Bosques-Palomo B; Carmona-Arriaga F; Fabiani MA; Aguirre-Soto A
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300611. PubMed ID: 38158746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brush-Spin-Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing.
    Chi QZ; Mu LZ; He Y; Luan Y; Jing YC
    Cardiovasc Eng Technol; 2021 Apr; 12(2):200-214. PubMed ID: 33263929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing methods for radiological anthropomorphic phantoms.
    Okkalidis N
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35830787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Spin Coating and Dip Coating with Gelatin/Hydroxyapatite for Bioresorbable Mg Alloy Orthopedic Implants: In Vitro and In Vivo Studies.
    Tran DT; Chen FH; Wu GL; Ching PCO; Yeh ML
    ACS Biomater Sci Eng; 2023 Feb; 9(2):705-718. PubMed ID: 36695051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of 3D freeform porous tubular constructs with mechanical flexibility mimicking that of soft vascular tissue.
    Lee JE; Park SJ; Yoon Y; Son Y; Park SH
    J Mech Behav Biomed Mater; 2019 Mar; 91():193-201. PubMed ID: 30594061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.
    Ghanizadeh Tabriz A; Mills CG; Mullins JJ; Davies JA; Shu W
    Front Bioeng Biotechnol; 2017; 5():13. PubMed ID: 28286747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of radioactive phantoms for nuclear medicine imaging.
    Läppchen T; Meier LP; Fürstner M; Prenosil GA; Krause T; Rominger A; Klaeser B; Hentschel M
    EJNMMI Phys; 2020 Apr; 7(1):22. PubMed ID: 32323035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting light-based 3D-printing for the fabrication of mechanically enhanced, patient-specific aortic grafts.
    Asciak L; Domingo-Roca R; Dow JR; Brodie R; Paterson N; Riches PE; Shu W; McCormick C
    J Mech Behav Biomed Mater; 2024 Jun; 154():106531. PubMed ID: 38588633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT.
    Hatamikia S; Jaksa L; Kronreif G; Birkfellner W; Kettenbach J; Buschmann M; Lorenz A
    Z Med Phys; 2023 Jun; ():. PubMed ID: 37380561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.
    Xu L; He J
    Langmuir; 2012 May; 28(19):7512-8. PubMed ID: 22533369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing.
    Biglino G; Verschueren P; Zegels R; Taylor AM; Schievano S
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):2. PubMed ID: 23324211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives.
    Xu X; Xue P; Gao M; Li Y; Xu Z; Wei Y; Zhang Z; Liu Y; Wang L; Liu H; Cheng B
    Adv Colloid Interface Sci; 2023 Nov; 321():102987. PubMed ID: 37852138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessing 3D Printed Vascular Phantoms for Procedural Simulation.
    Coles-Black J; Bolton D; Chuen J
    Front Surg; 2020; 7():626212. PubMed ID: 33585550
    [No Abstract]   [Full Text] [Related]  

  • 19. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction to: A Brush-Spin-Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing.
    Chi QZ; Mu LZ; He Y; Luan Y; Jing YC
    Cardiovasc Eng Technol; 2021 Apr; 12(2):250. PubMed ID: 33594633
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.