These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38793855)

  • 1. A Brain-Controlled and User-Centered Intelligent Wheelchair: A Feasibility Study.
    Zhang X; Li J; Zhang R; Liu T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wheelchair with lever propulsion control for climbing up and down stairs.
    Sasaki K; Eguchi Y; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3358-3361. PubMed ID: 28269023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BCI-controlled wheelchairs: end-users' perceptions, needs, and expectations, an interview-based study.
    Padfield N; Agius Anastasi A; Camilleri T; Fabri S; Bugeja M; Camilleri K
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1539-1551. PubMed ID: 37166297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End user evaluation of a Kneeling Wheelchair with "on the fly" adjustable seating functions.
    Mattie J; Wong A; Leland D; Borisoff J
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):543-554. PubMed ID: 29667464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time performance of a hands-free semi-autonomous wheelchair system using a combination of stereoscopic and spherical vision.
    Nguyen JS; Nguyen TN; Tran Y; Su SW; Craig A; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3069-72. PubMed ID: 23366573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Analysis of an Intelligent Toilet Wheelchair Based on Planar 2DOF Parallel Mechanism with Coupling Branch Chains.
    Shi X; Lu H; Chen Z
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. User assessment of manual wheelchair ride comfort and ergonomics.
    DiGiovine MM; Cooper RA; Boninger ML; Lawrence BM; VanSickle DP; Rentschler AJ
    Arch Phys Med Rehabil; 2000 Apr; 81(4):490-4. PubMed ID: 10768541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accessibility information in New Delhi for "Ease
    Agarwal Y
    Disabil Rehabil Assist Technol; 2019 Oct; 14(7):645-662. PubMed ID: 29902941
    [No Abstract]   [Full Text] [Related]  

  • 15. Design of assistive wheelchair system directly steered by human thoughts.
    Li J; Liang J; Zhao Q; Li J; Hong K; Zhang L
    Int J Neural Syst; 2013 Jun; 23(3):1350013. PubMed ID: 23627660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intelligent wheelchair based on automated navigation and BCI techniques.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1302-5. PubMed ID: 25570205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping wheelchair functions and their associated functional elements for stair climbing accessibility: a systematic review.
    Verma A; Shrivastava S; Ramkumar J
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):200-221. PubMed ID: 35613308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared control strategies for obstacle avoidance tasks in an intelligent wheelchair.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4254-7. PubMed ID: 19163652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Intelligent and Low-Cost Eye-Tracking System for Motorized Wheelchair Control.
    Dahmani M; Chowdhury MEH; Khandakar A; Rahman T; Al-Jayyousi K; Hefny A; Kiranyaz S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32679779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.