These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38793947)

  • 1. A Disturbance Compensation Control Strategy for Rotational Speed Standard Device Based on AMB System.
    Chen Y; Du L; Sun Q; Bai J
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.
    Xu X; Chen S
    Sensors (Basel); 2015 Aug; 15(9):21876-97. PubMed ID: 26334281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of Harmonic Force and Torque in Active Magnetic Bearing Systems with Repetitive Control and Notch Filters.
    Xu X; Chen S; Liu J
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28375189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Vibration Sensor-Based Method for Generating the Precise Rotor Orbit Shape with General Notch Filter Method for New Rotor Seal Design Testing and Diagnostics.
    Kalista K; Liska J; Jakl J
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Vibration Amplitude of Ultra-Precision Aerostatic Motorized Spindle under the Combined Action of Rotor Unbalance and Hydrodynamic Effect.
    Wang W; Song P; Yu H; Zhang G
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Vibration and Control of the Maglev High-Speed Motor Based on
    Hu Y; Yang K; Wu H; Guo X; Wang N
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Disturbance Rejection Control in Magnetic Bearing Rotor Systems with Redundant Structures.
    Cheng B; Cheng X; Song S; Wu H; Hu Y; Zhou R; Deng S
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inductive displacement sensors with a notch filter for an active magnetic bearing system.
    Chen SC; Le DK; Nguyen VS
    Sensors (Basel); 2014 Jul; 14(7):12640-57. PubMed ID: 25029281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Evaluation of an Active Axial Magnetic Levitated Bearing System in a Hemocompatibility Assessment Platform.
    Kurita N; Ogiwara E; Luo N; Kiang S; Karnik S; Smith PA; Nissim L; Fraser KH; Frazier OH; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2294-2297. PubMed ID: 36086211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault-Tolerant Control of Magnetically-Levitated Rotor with Redundant Structures Based on Improved Generalized Linearized EMFs Model.
    Cheng B; Cheng X; Song S; Deng S; Zhou R; Hu Y; Wu H
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal control for hybrid magnetically suspended flywheel rotor based on state feedback exact linearization model.
    Wen T; Xiang B; Zhang S
    Sci Prog; 2020; 103(3):36850420951389. PubMed ID: 32885729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Magnetic Bearings for Rotor Unbalance With Plug-In Time-Varying Resonators.
    Kang C; Tsao TC
    J Dyn Syst Meas Control; 2016 Jan; 138(1):0110011-1100111. PubMed ID: 27222600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy dynamic output feedback control with adaptive rotor imbalance compensation for magnetic bearing systems.
    Huang SJ; Lin LC
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1854-64. PubMed ID: 15462450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of active bearing input force for vibration reduction performance of unbalanced rotor systems.
    Hong D; Lee H; Han Y; Kim B
    Sci Rep; 2023 Jun; 13(1):8976. PubMed ID: 37268743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and control of a flexible rotor system with AMB-based sustentation.
    Arredondo I; Jugo J; Etxebarria V
    ISA Trans; 2008 Jan; 47(1):101-12. PubMed ID: 17767936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and experimental study on control strategy of zero-speed fin stabilizer based on disturbance and compensation.
    Liang L; Zhao P; Zhang S; Ji M; Song J; Yuan J
    PLoS One; 2018; 13(10):e0204446. PubMed ID: 30273372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings.
    Yu J; Zhou Y; Mo N; Sun Z; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation method and platform of vibrational disturbance test for ventricular assist devices.
    Li S; Yan J; Wu T; Hsu PL
    Int J Artif Organs; 2021 Feb; 44(2):115-123. PubMed ID: 32721192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.
    Tang J; Xiang B; Zhang Y
    ISA Trans; 2014 Jul; 53(4):1357-65. PubMed ID: 24745603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotor radial displacement sensorless control of bearingless permanent magnet synchronous motor based on MRAS and suspension force compensation.
    Hua Y; Zhu H
    ISA Trans; 2020 Aug; 103():306-318. PubMed ID: 32414559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.