These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38794015)

  • 41. Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition.
    Mekruksavanich S; Jitpattanakul A
    Sci Rep; 2023 Jul; 13(1):12067. PubMed ID: 37495634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep Recurrent Neural Networks for Human Activity Recognition.
    Murad A; Pyun JY
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coexistence of ZigBee-Based WBAN and WiFi for Health Telemonitoring Systems.
    Kim Y; Lee S; Lee S
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):222-30. PubMed ID: 25576586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. OPERAnet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors.
    Bocus MJ; Li W; Vishwakarma S; Kou R; Tang C; Woodbridge K; Craddock I; McConville R; Santos-Rodriguez R; Chetty K; Piechocki R
    Sci Data; 2022 Aug; 9(1):474. PubMed ID: 35922418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition.
    Olsson AE; Björkman A; Antfolk C
    Comput Biol Med; 2020 May; 120():103723. PubMed ID: 32421642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Personalized Activity Recognition with Deep Triplet Embeddings.
    Burns D; Boyer P; Arrowsmith C; Whyne C
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identity and Gender Recognition Using a Capacitive Sensing Floor and Neural Networks.
    Konings D; Alam F; Faulkner N; de Jong C
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CSI-Based Human Activity Recognition Using Multi-Input Multi-Output Autoencoder and Fine-Tuning.
    Chahoushi M; Nabati M; Asvadi R; Ghorashi SA
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer.
    Melinte DO; Vladareanu L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wi-Fringe: Leveraging Text Semantics in WiFi CSI-Based Device-Free Named Gesture Recognition.
    Islam MT; Nirjon S
    Int Conf Distrib Comput Sens Syst Workshops; 2020 May; 2020():35-42. PubMed ID: 34621905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Higher Order Feature Extraction and Selection for Robust Human Gesture Recognition using CSI of COTS Wi-Fi Devices.
    Farhana Thariq Ahmed H; Ahmad H; Phang SK; Vaithilingam CA; Harkat H; Narasingamurthi K
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whitening-Aided Learning from Radar Micro-Doppler Signatures for Human Activity Recognition.
    Sadeghi Adl Z; Ahmad F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CSI-F: A Human Motion Recognition Method Based on Channel-State-Information Signal Feature Fusion.
    Niu J; He X; Fang B; Han G; Wang X; He J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition.
    Abbaspour S; Fotouhi F; Sedaghatbaf A; Fotouhi H; Vahabi M; Linden M
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036479
    [TBL] [Abstract][Full Text] [Related]  

  • 59. WiGAN: A WiFi Based Gesture Recognition System with GANs.
    Jiang D; Li M; Xu C
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Learning in ex-vivo Lung Cancer Discrimination using Fluorescence Lifetime Endomicroscopic Images.
    Wang Q; Hopgood JR; Finlayson N; Williams GOS; Fernandes S; Williams E; Akram A; Dhaliwal K; Vallejo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1891-1894. PubMed ID: 33018370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.