BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38794050)

  • 1. A High-Resolution Time Reversal Method for Target Localization in Reverberant Environments.
    Ma H; Shang T; Li G; Li Z
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Multiple Sound Source Localization by Proposed T-Shaped Circular Distributed Microphone Arrays in Combination with GEVD and Adaptive GCC-PHAT/ML Algorithms.
    Dehghan Firoozabadi A; Irarrazaval P; Adasme P; Zabala-Blanco D; Játiva PP; Azurdia-Meza C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions Between Digital Noise Reduction and Reverberation: Acoustic and Behavioral Effects.
    Reinhart P; Zahorik P; Souza P
    J Am Acad Audiol; 2020 Jan; 31(1):17-29. PubMed ID: 31267958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reverberation on speech recognition in stationary and modulated noise by school-aged children and young adults.
    Wróblewski M; Lewis DE; Valente DL; Stelmachowicz PG
    Ear Hear; 2012; 33(6):731-44. PubMed ID: 22732772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural coding of sound envelope in reverberant environments.
    Slama MC; Delgutte B
    J Neurosci; 2015 Mar; 35(10):4452-68. PubMed ID: 25762687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverberation strength perceived by normal-hearing listeners predictable based on time-varying binaural loudness.
    Ellis GM; Zahorik P
    Hear Res; 2021 Sep; 409():108316. PubMed ID: 34340021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemispherical double-layer time reversal imaging in reverberant and noisy environments at audible frequencies.
    Lobréau S; Bavu É; Melon M
    J Acoust Soc Am; 2015 Feb; 137(2):785-96. PubMed ID: 25698013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning assisted sound source localization using two orthogonal first-order differential microphone arrays.
    Liu N; Chen H; Songgong K; Li Y
    J Acoust Soc Am; 2021 Feb; 149(2):1069. PubMed ID: 33639792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. II. Experimental verification of the predictions.
    Kompis M; Dillier N
    J Acoust Soc Am; 2001 Mar; 109(3):1134-43. PubMed ID: 11303927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound localization and word discrimination in reverberant environment in children with developmental dyslexia.
    Castro-Camacho W; Peñaloza-López Y; Pérez-Ruiz SJ; García-Pedroza F; Padilla-Ortiz AL; Poblano A; Villarruel-Rivas C; Romero-Díaz A; Careaga-Olvera A
    Arq Neuropsiquiatr; 2015 Apr; 73(4):314-20. PubMed ID: 25992522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raking early reflection signals for late reverberation and noise reduction.
    Kowalczyk K
    J Acoust Soc Am; 2019 Mar; 145(3):EL257. PubMed ID: 31067975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. USING MACHINE LEARNING TO MITIGATE THE EFFECTS OF REVERBERATION AND NOISE IN COCHLEAR IMPLANTS.
    Chu KM; Throckmorton CS; Collins LM; Mainsah BO
    Proc Meet Acoust; 2018 May; 33(1):. PubMed ID: 32582407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binaural segregation in multisource reverberant environments.
    Roman N; Srinivasan S; Wang D
    J Acoust Soc Am; 2006 Dec; 120(6):4040-51. PubMed ID: 17225430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
    Hazrati O; Sadjadi SO; Loizou PC; Hansen JH
    J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low latency localization of multiple sound sources in reverberant environments.
    Durković M; Habigt T; Rothbucher M; Diepold K
    J Acoust Soc Am; 2011 Dec; 130(6):EL392-8. PubMed ID: 22225132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Bayes based relative impulse response estimation.
    Giri R; Srikrishnan TA; Rao BD; Zhang T
    J Acoust Soc Am; 2018 Jun; 143(6):3922. PubMed ID: 29960466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain.
    Devore S; Ihlefeld A; Hancock K; Shinn-Cunningham B; Delgutte B
    Neuron; 2009 Apr; 62(1):123-34. PubMed ID: 19376072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Based Binaural Speech Separation in Reverberant Environments.
    Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2017 May; 25(5):1075-1084. PubMed ID: 29057291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.