BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38794064)

  • 1. Strategies for Reliable Stress Recognition: A Machine Learning Approach Using Heart Rate Variability Features.
    Bahameish M; Stockman T; Requena Carrión J
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life.
    Castaldo R; Montesinos L; Melillo P; James C; Pecchia L
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):12. PubMed ID: 30654799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Stress Detection through ECG and PPG signals using a Random Forest-based Algorithm.
    Benchekroun M; Chevallier B; Beaouiss H; Istrate D; Zalc V; Khalil M; Lenne D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3150-3153. PubMed ID: 36086412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross Dataset Analysis for Generalizability of HRV-Based Stress Detection Models.
    Benchekroun M; Velmovitsky PE; Istrate D; Zalc V; Morita PP; Lenne D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Comput Biol Med; 2019 Sep; 112():103381. PubMed ID: 31404718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prenatal stress assessment using heart rate variability and salivary cortisol: A machine learning-based approach.
    Cao R; Rahmani AM; Lindsay KL
    PLoS One; 2022; 17(9):e0274298. PubMed ID: 36084123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis.
    Castaldo R; Xu W; Melillo P; Pecchia L; Santamaria L; James C
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3805-3808. PubMed ID: 28269115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-domain heart rate variability features for automatic congestive heart failure prediction.
    Moses JC; Adibi S; Angelova M; Islam SMS
    ESC Heart Fail; 2024 Feb; 11(1):378-389. PubMed ID: 38009405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Machine Learning Algorithms for Heartbeat Detection Based on Accelerometric Signals Produced by a Smart Bed.
    Hoang ML; Matrella G; Ciampolini P
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalisable machine learning models trained on heart rate variability data to predict mental fatigue.
    Matuz A; van der Linden D; Darnai G; Csathó Á
    Sci Rep; 2022 Nov; 12(1):20023. PubMed ID: 36414673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience.
    Aimie-Salleh N; Malarvili MB; Whittaker AC
    Med Biol Eng Comput; 2019 Jun; 57(6):1229-1245. PubMed ID: 30734153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.
    Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT
    Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Technol Health Care; 2019; 27(S1):407-424. PubMed ID: 31045557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Next-Day Perceived and Physiological Stress of Pregnant Women by Using Machine Learning and Explainability: Algorithm Development and Validation.
    Ng A; Wei B; Jain J; Ward EA; Tandon SD; Moskowitz JT; Krogh-Jespersen S; Wakschlag LS; Alshurafa N
    JMIR Mhealth Uhealth; 2022 Aug; 10(8):e33850. PubMed ID: 35917157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition.
    Dissanayake T; Rajapaksha Y; Ragel R; Nawinne I
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.
    Barua S; Begum S; Ahmed MU
    Stud Health Technol Inform; 2015; 211():241-8. PubMed ID: 25980876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Machine Learning Algorithms Using Manual/Automated Features on 12-Lead Signal Electrocardiogram Classification: A Large Cohort Study on Students Aged Between 6 to 18 Years Old.
    Hajianfar G; Khorgami M; Rezaei Y; Amini M; Samiei N; Tabib A; Borji BK; Kalayinia S; Shiri I; Hosseini S; Oveisi M;
    Cardiovasc Eng Technol; 2023 Dec; 14(6):786-800. PubMed ID: 37848737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls.
    Maleki F; Ovens K; Gupta R; Reinhold C; Spatz A; Forghani R
    Radiol Artif Intell; 2023 Jan; 5(1):e220028. PubMed ID: 36721408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.