These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38794113)

  • 1. Correction: Soršak et al. Design and Investigation of Optical Properties of
    Soršak E; Volmajer Valh J; Korent Urek Š; Lobnik A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.
    Soršak E; Volmajer Valh J; Korent Urek Š; Lobnik A
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29662009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Preparation of a Rhodamine B Derivative-Based Fluorescent Probe for Visual Detection of Iron Ions.
    Qin Z; Su W; Liu P; Ma J; Zhang Y; Jiao T
    ACS Omega; 2021 Sep; 6(38):25040-25048. PubMed ID: 34604683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers.
    Liu F; Yan JR; Chen S; Yan GP; Pan BQ; Zhang Q; Wang YF; Gu YT
    Talanta; 2020 May; 212():120718. PubMed ID: 32113526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Turn-on" fluorescent probes based on Rhodamine B/amino acid derivatives for detection of Fe
    Li H; Liu Z; Jia R
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119095. PubMed ID: 33160134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups.
    Bie BJ; Zhao XR; Yan JR; Ke XJ; Liu F; Yan GP
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion.
    Shi D; Ni M; Luo J; Akashi M; Liu X; Chen M
    Analyst; 2015 Feb; 140(4):1306-13. PubMed ID: 25574522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rhodamine based dual chemosensor for Al
    Hazra A; Ghosh P; Roy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120905. PubMed ID: 35091182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of photocatalytic degradation of rhodamine B using Box-Behnken experimental design: Mineralization and mechanism.
    Madjene F; Assassi M; Chokri I; Enteghar T; Lebik H
    Water Environ Res; 2021 Jan; 93(1):112-122. PubMed ID: 32406561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "On-off" ratiometric fluorescent detection of Hg
    Guo L; Song Y; Cai K; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117703. PubMed ID: 31685421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma.
    Lee H; Park SH; Park YK; Kim BH; Kim SJ; Jung SC
    Chem Cent J; 2013 Sep; 7(1):156. PubMed ID: 24041151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid.
    Zhang Y; Luo G; Wang Q; Zhang Y; Zhou M
    Chemosphere; 2020 Feb; 240():124929. PubMed ID: 31561158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Near-Infrared Fluorescent Probe Based on a FRET Rhodamine Donor Linked to a Cyanine Acceptor for Sensitive Detection of Intracellular pH Alternations.
    Zhang Y; Bi J; Xia S; Mazi W; Wan S; Mikesell L; Luck RL; Liu H
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor.
    Li Z; Wu S; Han J; Han S
    Analyst; 2011 Sep; 136(18):3698-706. PubMed ID: 21792437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Gas and pH Fluorescent Sensors Based on Cellulose Acetate Electrospun Fibers Decorated with Rhodamine B-Functionalised Core-Shell Ferrous Nanoparticles.
    Petropoulou A; Kralj S; Karagiorgis X; Savva I; Loizides E; Panagi M; Krasia-Christoforou T; Riziotis C
    Sci Rep; 2020 Jan; 10(1):367. PubMed ID: 31941969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe
    Chen X; Sun W; Bai Y; Zhang F; Zhao J; Ding X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():566-572. PubMed ID: 29112923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing Experiment and Theory to Evaluate Rhodamine B ethylenediamine as a Fluorescent Sensor for G-type Nerve Agents.
    Hamstra A; Cai Y; Reynolds Z; Griffins CS; Rheingold AL; Schaaf NJ; Sinn E; Bates JE; Weerasinghe AJ
    J Fluoresc; 2022 May; 32(3):961-967. PubMed ID: 35218474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe
    Jiang X; Li W; Liu M; Yang J; Liu M; Gao D; Li H; Ning Z
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.