BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3879459)

  • 1. Shear rate and orientation of erythrocytes in pulmonary microvessels of bullfrogs.
    Koyama T
    Biorheology; 1985; 22(5):379-84. PubMed ID: 3879459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Measurements of blood flow velocity in pulmonary microvessels with laser-Doppler microscope and investigation of several factors affecting the blood flow velocity (author's transl)].
    Horimoto M
    Hokkaido Igaku Zasshi; 1981 Sep; 56(5):507-18. PubMed ID: 6976299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic reduction in blood flow velocity in pulmonary arterioles and capillaries.
    Koyama T; Horimoto M; Shindo Y; Kikuchi Y; Kakiuchi Y; Araiso T; Arai T
    Adv Exp Med Biol; 1984; 169():651-60. PubMed ID: 6610285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow velocity in pulmonary microvessels of bullfrog.
    Horimoto M; Koyama T; Mishina H; Asakura T; Murao M
    Respir Physiol; 1979 May; 37(1):45-59. PubMed ID: 313064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White blood cell adhesion to endothelium and rheological behavior in microvessels of overinflated frog's lung.
    Koyama T; Kikuchi Y; Horimoto M; Kakiuchi Y; Tsushima N; Nitta J
    Biorheology; 1982; 19(1/2):221-8. PubMed ID: 6980024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of blood flow on the leukocyte-endothelium interaction in pulmonary microvessels.
    Kuhnle GE; Kuebler WM; Groh J; Goetz AE
    Am J Respir Crit Care Med; 1995 Oct; 152(4 Pt 1):1221-8. PubMed ID: 7551374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulmonary microcirculatory response to localized hypercapnia.
    Koyama T; Horimoto M
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1556-64. PubMed ID: 6984042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillating neuro-capillary coupling during cortical spreading depression as observed by tracking of FITC-labeled RBCs in single capillaries.
    Tomita M; Tomita Y; Unekawa M; Toriumi H; Suzuki N
    Neuroimage; 2011 Jun; 56(3):1001-10. PubMed ID: 21376817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N; Kotoula MG; Karabatsas CH; Tsironi E; Chatzoulis DZ
    Biorheology; 2007; 44(5-6):375-86. PubMed ID: 18401076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of wall shear rate on thrombogenesis in microvessels of the rat mesentery.
    Sato M; Ohshima N
    Circ Res; 1990 Apr; 66(4):941-9. PubMed ID: 2317896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of shear and flow rates in pial arterioles during somatosensory stimulation.
    Ngai AC; Winn HR
    Am J Physiol; 1996 May; 270(5 Pt 2):H1712-7. PubMed ID: 8928878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible spectroscopic technique for flowing erythrocytes in capillary.
    Shiga T; Tateishi N; Maeda N
    Biorheology; 1990; 27(3-4):389-97. PubMed ID: 2261505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal hematocrit theory during activity in the bullfrog (Rana catesbeiana).
    Withers PC; Hillman SS; Hedrick MS; Kimmel PB
    Comp Biochem Physiol A Comp Physiol; 1991; 99(1-2):55-60. PubMed ID: 1675957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of stimulated leukocytes in the pulmonary microcirculation of perfused rat lungs.
    Aoki T; Suzuki Y; Nishio K; Suzuki K; Miyata A; Mori M; Takasugi T; Fujita H; Tsumura H; Ishimura Y; Suematsu M; Yamaguchi K
    Adv Exp Med Biol; 1997; 428():355-62. PubMed ID: 9500070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity pulse advances pressure pulse by close to 45 degrees in the rat pial arterioles.
    Seki J; Satomura Y; Ooi Y
    Biorheology; 2004; 41(1):45-52. PubMed ID: 14967889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation and deformation of erythrocytes in flowing blood.
    Fujii M; Nakajima K; Sakamoto K; Kanai H
    Ann N Y Acad Sci; 1999 Apr; 873():245-61. PubMed ID: 10372174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery.
    Tangelder GJ; Slaaf DW; Muijtjens AM; Arts T; oude Egbrink MG; Reneman RS
    Circ Res; 1986 Nov; 59(5):505-14. PubMed ID: 3802426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.