These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3879459)

  • 21. Laser Doppler microscope in an oblique-backward mode and pulsatile blood flow velocity in pulmonary arteriole.
    Koyama T; Horimoto M; Mishina H; Asakura T; Horimoto M; Murao M
    Experientia; 1979 Jan; 35(1):65-7. PubMed ID: 311296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cessation of capillary blood flow induced by localized application of carbon dioxide.
    Koyama T; Horimoto M; Kikuchi Y
    Adv Exp Med Biol; 1984; 169():643-9. PubMed ID: 6428181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of microvascular pressure in arteriolar vessel trees of ventilated rabbit lungs.
    Kuhnle GE; Pries AR; Goetz AE
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1510-5. PubMed ID: 8238562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red blood cell flow cessation and diameter reductions in skeletal muscle capillaries in vivo - the role of oxygen.
    Bosman J; Tangelder GJ; oude Egbrink MG; Reneman RS; Slaaf DW
    Pflugers Arch; 1995 Sep; 430(5):852-61. PubMed ID: 7478943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex-vivo) microvascular system.
    Kaul DK; Nagel RL; Baez S
    Microvasc Res; 1983 Sep; 26(2):170-81. PubMed ID: 6621407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.
    Perry MA; Granger DN
    J Clin Invest; 1991 May; 87(5):1798-804. PubMed ID: 1673690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood flow reduction in local pulmonary microvessels during acute hypoxia imposed on a small fraction of the lung.
    Koyama T; Horimoto M
    Respir Physiol; 1983 May; 52(2):181-9. PubMed ID: 6878908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear stress variation induced by red blood cell motion in microvessel.
    Xiong W; Zhang J
    Ann Biomed Eng; 2010 Aug; 38(8):2649-59. PubMed ID: 20352336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Landis Award lecture. Questions and signposts in microvascular research.
    Sobin SS
    Microvasc Res; 1981 Jan; 21(1):1-18. PubMed ID: 7207230
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of transpulmonary pressure on blood-flow velocity in pulmonary microvessels.
    Horimoto M; Koyama T; Kikuchi Y; Kakiuchi Y; Murao M
    Respir Physiol; 1981 Jan; 43(1):31-41. PubMed ID: 7244425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging of oxygen saturation and distribution of erythrocytes in microvessels.
    Tateishi N; Suzuki Y; Tanaka J; Maeda N
    Microcirculation; 1997 Dec; 4(4):403-12. PubMed ID: 9431508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized heterogeneity of red cell velocity in skeletal muscle at rest and after contraction.
    Tyml K; Ellis CG
    Adv Exp Med Biol; 1989; 248():735-43. PubMed ID: 2789469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries.
    Hogg JC; Coxson HO; Brumwell ML; Beyers N; Doerschuk CM; MacNee W; Wiggs BR
    J Appl Physiol (1985); 1994 Oct; 77(4):1795-800. PubMed ID: 7836202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sustained decrease and remarkable increase in red blood cell velocity in intraparenchymal capillaries associated with potassium-induced cortical spreading depression.
    Unekawa M; Tomita M; Tomita Y; Toriumi H; Suzuki N
    Microcirculation; 2012 Feb; 19(2):166-74. PubMed ID: 21992739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A murine model to study vasoreactivity and intravascular flow in lung isograft microvessels.
    Regelin N; Heyder S; Laschke MW; Hadizamani Y; Borgmann M; Moehrlen U; Schramm R; Bals R; Menger MD; Hamacher J
    Sci Rep; 2019 Mar; 9(1):5170. PubMed ID: 30914786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative flow velocity of erythrocytes and leukocytes in feline retinal capillaries.
    Ben-nun J
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1854-9. PubMed ID: 8759354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Determination of the rate of oxygen release from flowing erythrocytes in a microvessel--development of an apparatus and the application to microvessels of rat mesentery].
    Tateishi N
    Nihon Seirigaku Zasshi; 1990; 52(2):23-35. PubMed ID: 2139703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.