These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38794630)
1. Three-Dimensional Bioprinting of GelMA Hydrogels with Culture Medium: Balancing Printability, Rheology and Cell Viability for Tissue Regeneration. Mendoza-Cerezo L; Rodríguez-Rego JM; Macías-García A; Callejas-Marín A; Sánchez-Guardado L; Marcos-Romero AC Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794630 [TBL] [Abstract][Full Text] [Related]
2. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
3. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. Davern JW; Hipwood L; Bray LJ; Meinert C; Klein TJ APL Bioeng; 2024 Mar; 8(1):016101. PubMed ID: 38204454 [TBL] [Abstract][Full Text] [Related]
4. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Rizwan M; Chan SW; Comeau PA; Willett TL; Yim EKF Biomed Mater; 2020 Oct; 15(6):065017. PubMed ID: 32640427 [TBL] [Abstract][Full Text] [Related]
5. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
6. Printing GelMA bioinks: a strategy for building Fu Z; Hai N; Zhong Y; Sun W Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447206 [TBL] [Abstract][Full Text] [Related]
7. [Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats]. Jin RH; Zhang ZZ; Xu PQ; Xia SZ; Weng TT; Zhu ZK; Wang XG; You CG; Han CM Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2023 Feb; 39(2):165-174. PubMed ID: 36878526 [No Abstract] [Full Text] [Related]
8. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
9. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. Li H; Tan YJ; Liu S; Li L ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901 [TBL] [Abstract][Full Text] [Related]
12. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]
13. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
14. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
16. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
17. Chitin nanocrystal-assisted 3D bioprinting of gelatin methacrylate scaffolds. Ling Z; Zhao J; Song S; Xiao S; Wang P; An Z; Fu Z; Shao J; Zhang Z; Fu W; Song S Regen Biomater; 2023; 10():rbad058. PubMed ID: 37359730 [TBL] [Abstract][Full Text] [Related]
18. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Lai G; Meagher L Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38565131 [TBL] [Abstract][Full Text] [Related]
19. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Li J; Moeinzadeh S; Kim C; Pan CC; Weale G; Kim S; Abrams G; James AW; Choo H; Chan C; Yang YP Biomaterials; 2023 Feb; 293():121969. PubMed ID: 36566553 [TBL] [Abstract][Full Text] [Related]
20. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]