These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38794816)

  • 1. Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability.
    Wu X; Liu Y; Wang J; Tan Y; Liang Z; Zhou G
    Adv Mater; 2024 May; ():e2403818. PubMed ID: 38794816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review.
    Abe Y; Watanabe R; Yodose T; Kumagai S
    Heliyon; 2024 Apr; 10(7):e28145. PubMed ID: 38560163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling.
    Bhattacharyya S; Roy S; Vajtai R
    Small; 2024 Jun; ():e2400557. PubMed ID: 38922789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries.
    Tao Y; Rahn CD; Archer LA; You F
    Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of spent lithium-ion batteries for a sustainable future: recent advancements.
    Biswal BK; Zhang B; Thi Minh Tran P; Zhang J; Balasubramanian R
    Chem Soc Rev; 2024 Jun; 53(11):5552-5592. PubMed ID: 38644694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries.
    Ji H; Wang J; Ma J; Cheng HM; Zhou G
    Chem Soc Rev; 2023 Nov; 52(23):8194-8244. PubMed ID: 37886791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-ion battery recycling: a source of per- and polyfluoroalkyl substances (PFAS) to the environment?
    Rensmo A; Savvidou EK; Cousins IT; Hu X; Schellenberger S; Benskin JP
    Environ Sci Process Impacts; 2023 Jun; 25(6):1015-1030. PubMed ID: 37195252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions.
    Lv L; Zhou S; Liu C; Sun Y; Zhang J; Bu C; Meng J; Huang Y
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of lithium-ion batteries' supply-chain in Europe: Material flow analysis and environmental assessment.
    Bruno M; Fiore S
    J Environ Manage; 2024 May; 358():120758. PubMed ID: 38593735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials.
    Gu K; Tokoro C; Takaya Y; Zhou J; Qin W; Han J
    Waste Manag; 2024 Apr; 179():120-129. PubMed ID: 38471250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of global power lithium-ion batteries and associated critical metal recycling.
    Miao Y; Liu L; Zhang Y; Tan Q; Li J
    J Hazard Mater; 2022 Mar; 425():127900. PubMed ID: 34896721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.