These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 38794895)
1. Alkane-translocated cells of Rhodococcus strains utilize dissolved oxygen in the alkane phase of an aqueous-alkane two-phase culture. Iwabuchi N; Takihara H Biosci Biotechnol Biochem; 2024 Jul; 88(8):979-982. PubMed ID: 38794895 [TBL] [Abstract][Full Text] [Related]
2. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression. Takihara H; Ogihara J; Yoshida T; Okuda S; Nakajima M; Iwabuchi N; Sunairi M Microbes Environ; 2014; 29(4):346-52. PubMed ID: 25311591 [TBL] [Abstract][Full Text] [Related]
3. Mg(2+)-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane. Takihara H; Akase Y; Sunairi M; Iwabuchi N Microbes Environ; 2016 Jun; 31(2):178-81. PubMed ID: 27180641 [TBL] [Abstract][Full Text] [Related]
4. Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Iwabuchi N; Sharma PK; Sunairi M; Kishi E; Sugita K; van der Mei HC; Nakajima M; Busscher HJ Environ Sci Technol; 2009 Nov; 43(21):8290-4. PubMed ID: 19924958 [TBL] [Abstract][Full Text] [Related]
5. Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain. Xiang W; Liang Y; Hong S; Wang G; You J; Xue Y; Ma Y Arch Microbiol; 2022 Apr; 204(5):259. PubMed ID: 35419660 [TBL] [Abstract][Full Text] [Related]
6. Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Cappelletti M; Fedi S; Frascari D; Ohtake H; Turner RJ; Zannoni D Appl Environ Microbiol; 2011 Mar; 77(5):1619-27. PubMed ID: 21193665 [TBL] [Abstract][Full Text] [Related]
7. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. de Carvalho CC; Wick LY; Heipieper HJ Appl Microbiol Biotechnol; 2009 Feb; 82(2):311-20. PubMed ID: 19096838 [TBL] [Abstract][Full Text] [Related]
8. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation. Erable B; Goubet I; Lamare S; Legoy MD; Maugard T Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840 [TBL] [Abstract][Full Text] [Related]
9. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis]. Zhukov DV; Murygina VP; Kaliuzhnyĭ SV Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107 [TBL] [Abstract][Full Text] [Related]
10. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Rapp P; Gabriel-Jürgens LHE Microbiology (Reading); 2003 Oct; 149(Pt 10):2879-2890. PubMed ID: 14523120 [TBL] [Abstract][Full Text] [Related]
11. Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Takei D; Washio K; Morikawa M Biotechnol Lett; 2008 Aug; 30(8):1447-52. PubMed ID: 18414802 [TBL] [Abstract][Full Text] [Related]
12. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp. Sayavedra-Soto LA; Chang WN; Lin TK; Ho CL; Liu HS Biotechnol Prog; 2006; 22(5):1368-73. PubMed ID: 17022676 [TBL] [Abstract][Full Text] [Related]
13. [Particularities of alkane oxidation in Rhodococcus erythropolis EK-1 strain--producer of surface-active substances]. Pyroh TP; Shevchuk TA; Klymenko IuO Mikrobiol Z; 2009; 71(4):9-14. PubMed ID: 19938610 [TBL] [Abstract][Full Text] [Related]
14. [Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane]. Pirog TP; Shevchuk TA; Klimenko IuA Prikl Biokhim Mikrobiol; 2010; 46(6):651-8. PubMed ID: 21261075 [TBL] [Abstract][Full Text] [Related]
15. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Koma D; Sakashita Y; Kubota K; Fujii Y; Hasumi F; Chung SY; Kubo M Biosci Biotechnol Biochem; 2003 Jul; 67(7):1590-3. PubMed ID: 12913308 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Whyte LG; Hawari J; Zhou E; Bourbonnière L; Inniss WE; Greer CW Appl Environ Microbiol; 1998 Jul; 64(7):2578-84. PubMed ID: 9647833 [TBL] [Abstract][Full Text] [Related]
17. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336 [TBL] [Abstract][Full Text] [Related]
18. Regiospecific internal desaturation of aliphatic compounds by a mutant Rhodococcus strain. Koike K; Ara K; Adachi S; Takigawa H; Mori H; Inoue S; Kimura Y; Ito S Appl Environ Microbiol; 1999 Dec; 65(12):5636-8. PubMed ID: 10584034 [TBL] [Abstract][Full Text] [Related]
19. Characterization and Transcriptional Regulation of Gibu N; Kasai D; Ikawa T; Akiyama E; Fukuda M Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31652785 [TBL] [Abstract][Full Text] [Related]
20. Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Bredholt H; Bruheim P; Potocky M; Eimhjellen K Can J Microbiol; 2002 Apr; 48(4):295-304. PubMed ID: 12030701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]