BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38795464)

  • 1. In-situ oil-spill remediation by an electrodeposited superhydrophobic copper mesh.
    Kumari P; Kumar K; Kumar A
    Mar Pollut Bull; 2024 Jul; 204():116513. PubMed ID: 38795464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective cleanup of oil contamination on bio-inspired superhydrophobic surface.
    Zhou Q; Wang L; Xu Q; Zhao Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21321-21328. PubMed ID: 31124064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically fast preparation of superhydrophobic copper mesh for high-efficiency oil spill adsorption and oil-water separation.
    Chen X; Gong X
    J Hazard Mater; 2024 Jul; 472():134465. PubMed ID: 38704904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile approach for oil-water separation using superhydrophobic polystyrene-silica coated stainless steel mesh bucket.
    Sutar RS; Latthe SS; Jundle AR; Gaikwad PP; Ingole SS; Nagappan S; Kim YH; Bhosale AK; Saji VS; Liu S
    Mar Pollut Bull; 2024 Jan; 198():115790. PubMed ID: 38007872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation.
    Baig N; Kammakakam I
    Chemosphere; 2023 Feb; 313():137544. PubMed ID: 36528151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation.
    Zhang J; Chen R; Liu J; Liu Q; Yu J; Zhang H; Jing X; Liu P; Wang J
    Chemosphere; 2020 Jan; 239():124793. PubMed ID: 31726530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution.
    Habibi N; Pourjavadi A
    Chemosphere; 2022 Jan; 287(Pt 3):132254. PubMed ID: 34583296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ assessment of the performance of oil-water separation by superhydrophobic coated cotton under extreme conditions.
    Singhal H; Pandit SK; Kumari P; Kumar A
    Mar Pollut Bull; 2024 Mar; 200():116062. PubMed ID: 38290364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes.
    Patowary M; Ananthakrishnan R; Pathak K
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18063-18072. PubMed ID: 28624944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Preparation of Ag-Coated Superhydrophobic/Superoleophilic Mesh for Efficient Oil/Water Separation with Excellent Corrosion Resistance.
    Du Z; Ding P; Tai X; Pan Z; Yang H
    Langmuir; 2018 Jun; 34(23):6922-6929. PubMed ID: 29723467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Application of Superhydrophobic Copper Mesh by Chemical Etching and
    Tong Q; Fan Z; Wang B; Liu Q; Bo Y; Qian L
    Front Chem; 2021; 9():737550. PubMed ID: 34888292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobic Nickel-Electroplated Carbon Fibers for Versatile Oil/Water Separation with Excellent Reusability and High Environmental Stability.
    Huang L; Zhang L; Song J; Wang X; Liu H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24390-24402. PubMed ID: 32281777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.
    Kong LH; Chen XH; Yu LG; Wu ZS; Zhang PY
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2616-25. PubMed ID: 25590434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Nano-Hydroxyapatite Derived from Oyster Shell in Fabricating Superhydrophobic Sponge for Efficient Oil/Water Separation.
    Liu C; Chen SH; Yang-Zhou CH; Zhang QG; Michael RN
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic poly(alkoxysilane) organogels as sorbent material for oil spill cleanup.
    Ozan Aydin G; Bulbul Sonmez H
    Mar Pollut Bull; 2015 Jul; 96(1-2):155-64. PubMed ID: 26002096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures.
    Abu-Thabit NY; Uwaezuoke OJ; Abu Elella MH
    Chemosphere; 2022 May; 294():133644. PubMed ID: 35065181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New generation material for oil spill cleanup.
    Wang H; Yuan X
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1248-50. PubMed ID: 23892617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation.
    Song J; Liu N; Li J; Cao Y; Cao H
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation.
    Li Y; Zhang H; Ma C; Yin H; Gong L; Duh Y; Feng R
    Carbohydr Polym; 2019 Dec; 226():115279. PubMed ID: 31582078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.