BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38795468)

  • 1. Role of microalgae-bacterial consortium in wastewater treatment: A review.
    Li L; Chai W; Sun C; Huang L; Sheng T; Song Z; Ma F
    J Environ Manage; 2024 Jun; 360():121226. PubMed ID: 38795468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.
    Wang Y; Ho SH; Cheng CL; Guo WQ; Nagarajan D; Ren NQ; Lee DJ; Chang JS
    Bioresour Technol; 2016 Dec; 222():485-497. PubMed ID: 27765375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in biological wastewater treatment technology of microalgae.].
    Pan Y; Wang HS; Liu ZW; Yan H
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2490-2500. PubMed ID: 31418252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application.
    Phyu K; Zhi S; Liang J; Chang CC; Liu J; Cao Y; Wang H; Zhang K
    Environ Pollut; 2024 May; 349():123864. PubMed ID: 38554837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light intensity affects the mixotrophic carbon exploitation in Chlorella protothecoides: consequences on microalgae-bacteria based wastewater treatment.
    Pastore M; Santaeufemia S; Bertucco A; Sforza E
    Water Sci Technol; 2018 Nov; 78(8):1762-1771. PubMed ID: 30500800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future.
    Goswami RK; Agrawal K; Shah MP; Verma P
    Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work.
    Lv J; Feng J; Liu Q; Xie S
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28045437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of microalgal-bacterial energy nexus improves CO
    Hasnain M; Zainab R; Ali F; Abideen Z; Yong JWH; El-Keblawy A; Hashmi S; Radicetti E
    Ecotoxicol Environ Saf; 2023 Nov; 267():115646. PubMed ID: 37939556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge.
    Lee SA; Lee N; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of microalgae based technology for the removal of antibiotics from wastewater: A review.
    Leng L; Wei L; Xiong Q; Xu S; Li W; Lv S; Lu Q; Wan L; Wen Z; Zhou W
    Chemosphere; 2020 Jan; 238():124680. PubMed ID: 31545213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery.
    Arashiro LT; Montero N; Ferrer I; Acién FG; Gómez C; Garfí M
    Sci Total Environ; 2018 May; 622-623():1118-1130. PubMed ID: 29890581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions.
    Robles Á; Capson-Tojo G; Galès A; Ruano MV; Sialve B; Ferrer J; Steyer JP
    J Environ Manage; 2020 May; 261():110244. PubMed ID: 32148311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater.
    Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D
    Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.