These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38795564)

  • 1. Integrative modeling meets deep learning: Recent advances in modeling protein assemblies.
    Shor B; Schneidman-Duhovny D
    Curr Opin Struct Biol; 2024 Aug; 87():102841. PubMed ID: 38795564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Advances in Protein Structure Prediction.
    Pakhrin SC; Shrestha B; Adhikari B; Kc DB
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34074028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Protein-Protein Docking Models Using Deep Learning.
    Zhang Y; Wang X; Zhang Z; Huang Y; Kihara D
    Methods Mol Biol; 2024; 2780():149-162. PubMed ID: 38987469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revolutionizing protein-protein interaction prediction with deep learning.
    Zhang J; Durham J; Qian Cong
    Curr Opin Struct Biol; 2024 Apr; 85():102775. PubMed ID: 38330793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of proteins and their assemblies with the integrative modeling platform.
    Webb B; Lasker K; Schneidman-Duhovny D; Tjioe E; Phillips J; Kim SJ; Velázquez-Muriel J; Russel D; Sali A
    Methods Mol Biol; 2011; 781():377-97. PubMed ID: 21877292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning model for predicting optimal distance range in crosslinking mass spectrometry data.
    Cohen S; Schneidman-Duhovny D
    Proteomics; 2023 Sep; 23(17):e2200341. PubMed ID: 37070547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models.
    Cohen T; Halfon M; Carter L; Sharkey B; Jain T; Sivasubramanian A; Schneidman-Duhovny D
    Methods Enzymol; 2023; 678():237-262. PubMed ID: 36641210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning methods for 3D structural proteome and interactome modeling.
    Lee D; Xiong D; Wierbowski S; Li L; Liang S; Yu H
    Curr Opin Struct Biol; 2022 Apr; 73():102329. PubMed ID: 35139457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies.
    Inbar Y; Benyamini H; Nussinov R; Wolfson HJ
    Phys Biol; 2005 Nov; 2(4):S156-65. PubMed ID: 16280621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AI-Driven Deep Learning Techniques in Protein Structure Prediction.
    Chen L; Li Q; Nasif KFA; Xie Y; Deng B; Niu S; Pouriyeh S; Dai Z; Chen J; Xie CY
    Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39125995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Structure Prediction: Conventional and Deep Learning Perspectives.
    Jisna VA; Jayaraj PB
    Protein J; 2021 Aug; 40(4):522-544. PubMed ID: 34050498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of proteins and their assemblies with the Integrative Modeling Platform.
    Webb B; Lasker K; Velázquez-Muriel J; Schneidman-Duhovny D; Pellarin R; Bonomi M; Greenberg C; Raveh B; Tjioe E; Russel D; Sali A
    Methods Mol Biol; 2014; 1091():277-95. PubMed ID: 24203340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning and protein structure modeling.
    Baek M; Baker D
    Nat Methods; 2022 Jan; 19(1):13-14. PubMed ID: 35017724
    [No Abstract]   [Full Text] [Related]  

  • 15. Fast and accurate Ab Initio Protein structure prediction using deep learning potentials.
    Pearce R; Li Y; Omenn GS; Zhang Y
    PLoS Comput Biol; 2022 Sep; 18(9):e1010539. PubMed ID: 36112717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein oligomer modeling guided by predicted interchain contacts in CASP14.
    Baek M; Anishchenko I; Park H; Humphreys IR; Baker D
    Proteins; 2021 Dec; 89(12):1824-1833. PubMed ID: 34324224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.
    Tuncbag N; Gursoy A; Keskin O
    Phys Biol; 2011 Jun; 8(3):035006. PubMed ID: 21572173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative Mass Spectrometry-Based Approaches for Modeling Macromolecular Assemblies.
    Lau AM; Politis A
    Methods Mol Biol; 2021; 2247():221-241. PubMed ID: 33301120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling protein assemblies in the proteome.
    Kuzu G; Keskin O; Nussinov R; Gursoy A
    Mol Cell Proteomics; 2014 Mar; 13(3):887-96. PubMed ID: 24445405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep-learning framework for multi-level peptide-protein interaction prediction.
    Lei Y; Li S; Liu Z; Wan F; Tian T; Li S; Zhao D; Zeng J
    Nat Commun; 2021 Sep; 12(1):5465. PubMed ID: 34526500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.